

ENFRIADORA DE AGUA SERIE

WSA

R410A

MANUAL TÉCNICO

El manual técnico de la máquina se compone de los siguientes documentos:

- · Declaración de conformidad
- · Manual técnico
- · Diseños dimensionales

Instrucciones: consultar la parte correspondiente.

Leer y comprender las instrucciones antes de trabajar en la máquina.

CONSERVAR PARA FUTURAS CONSULTAS

Está prohibida la reproducción, memorización y la transmisión, incluso parcial, de esta publicación, en cualquier forma, sin la autorización previa escrita por la empresa.

Puede contactar con la empresa para solicitar cualquier información referente al uso de sus productos.

La empresa tiene una política de mejora y desarrollo constante de los propios productos y se reserva el derecho a modificar las especificaciones, los accesorios y las instrucciones indicadas sobre el manejo y el mantenimiento en cada momento.

Declaración de conformidad

Se declara bajo nuestra responsabilidad, que las unidades suministradas son conformes en cada parte a las directivas vigentes CEE y EN. La declaración de conformidad se adjunta al manual técnico suministrado con la unidad. La unidad contiene gases fluorados de efecto invernadero.

INDICE

1. INTRODUCCIÓN	5
1.1 Informaciones preliminares	5
1.2 Finalidad y contenido de las instrucciones	
1.3 Conservación de las instrucciones	5
1.4 Actualización de las instrucciones	5
1.5 Como utilizar estas instrucciones	5
1.6 Riesgos residuales	6
1.7 Simbología de seguridad	7
1.8 Simboli di sicurezza utilizzati	
1.9 Limiti di utilizzo e usi non consentiti	
1.10 Identificazione dell'unità	
2. SEGURIDAD	
2.1 Advertencias de substancias tóxicas potencialmente peligrosas	
2.2 Manipulación	
2.3 Prevenir la inhalación de elevadas concentraciones de vapor	
2.4 Proceder en caso de fuga accidental de refrigerante	
2.5 Informaciones toxicológicas principales en el tipo de fluido frigorífico utilizado	
2.6 Medidas primeros auxilios	
3. CARACTERÍSTICAS TÉCNICAS	
3.1 Descripción unidad	
3.2 Otras versiones	
3.3 Descripción accesorios	
3.4 Datos técnicos	
3.5 Límites de uso	
3.6 Factores de corrección	
3.7 Datos sonoros	
4. INSTALACIÓN	
4.1 Advertencias generales y uso de los símbolos	
4.2 Salud y seguridad de los trabajadores	
4.3 Dispositivos de protección individuales	
4.4 Recepción e inspección	
4.5 Almacenaje	
4.6 Desembalaje	
4.7 Transporte y manejo	
4.8 Posicionamiento y espacio técnico mínimo	
4.9 Instalación de antivibradores de goma (KAVG)	
4.10 Placa de comunicación serial RS485 (INSE)	
4.11 Instalación de la bomba del circuito de fuente	
4.12 Llenado circuito hidráulico	
4.13 Características químicas del agua	
4.14 Mínimo contenido de agua circuito del lado de la instalación	
4.15 Instalación con circuito de código abierto (versión reversible)	
4.16 Propiedades químicas del agua subterránea	
4.17 Componentes hidráulicos	
4.17 Componentes indraducos 4.18 Llenado del circuito hidráulico	
4.19 Vaciado de la instalación	
4.20 WSA/EV Conexión frigorífica para unidad motoevaporanti	
4.20 WSA/EV Conexion ingornica para unidad indidevaporanti	
4.21 Conexiones electricas. Informaciones preliminares de seguridad	
4.23 Conexión eléctrica	
4.24 Esquemas frigoríficos	
5.1 Comprobaciones previas	
5.2 Descripción del control	
5.3 Conexión del display remoto	43

6. USO	45			
	45			
	46			
6.3 Stand-by	46			
	46			
	47			
	47			
6.7 Reset alarmas	47			
	47			
MANTENIMIENTO UNIDAD				
7.1 Advertencias generales	48			
	48			
7.3 Controles periódicos	48			
	49			
	50			
8.1 Desconexión de la unidad	50			
	50			
	50			
	50			
	50			
10. DISEÑOS DIMENSIONALES	52			

1. INTRODUCCIÓN

1.1 Informaciones preliminares

Está prohibida la reproducción, la memorización y la transmisión, también parcialmente, de esta publicación, de cualquier manera, sin la autorización previamente escrita por parte de HIDROS. La máquina, a la cual se refiere las presentes instrucciones, está diseñada para el uso que será indicado en los párrafos siguientes, compatible con las características prestacionales.

Se excluye cualquier responsabilidad contractual y extracontractual de la empresa por daños causados a personas, animales o cosas, de errores de instalación, de regulación y de mantenimiento o de uso indebido. Todos los usos no indicados en este manual no están permitidos.

La presente documentación es un soporte informativo y no es considerado como contrato con respecto a terceros. La empresa tiene una política de mejora y desarrollo constante de los propios productos. Por tanto, se reserva el derecho de aportar modificaciones a las especificaciones, a los accesorios y a la documentación en cada momento, sin algún preaviso y sin la obligación de actualizar lo gue se ha entregado.

1.2 Finalidad y contenido de las instrucciones

Las presentes instrucciones se proponen suministrar informaciones esenciales para la selección, la instalación, el uso y el mantenimiento de la máquina. Han sido preparados conforme a las disposiciones legislativas de la Unión Europea y las normas técnicas en vigor en la fecha de emisión de las instrucciones estas instrucciones.

Las instrucciones contemplan las indicaciones para evitar usos impropios razonablemente previsibles.

1.3 Conservación de las instrucciones

Las instrucciones deben ser puestas en un lugar idóneo, resguardado del polvo, humedad y fácilmente accesible a los usuarios y a los operadores. Las instrucciones deben estar siempre acompañadas de la máquina durante todo el ciclo de vida de la máquina y por tanto, deben ser trasferidas al operador.

1.4 Actualización de las instrucciones

Se aconseja verificar siempre que las instrucciones estén actualizadas a la última versión disponible.

Eventuales actualizaciones enviadas al cliente deberán ser conservadas junto con el presente manual. La empresa está a disposición para suministrar cualquier información referente al uso de sus productos.

1.5 Como utilizar estas instrucciones

Las instrucciones forman parte de la máquina.

Los usuarios y los operadores deben consultar obligatoriamente las instrucciones de cada operación sobre la máquina y ante cualquier duda sobre el transporte, desplazamiento, instalación, mantenimiento, uso y también ante el desmantelamiento de la máquina.

En estas instrucciones, para reclamar la atención de los operarios sobre los trabajos que sean inseguros, se indican con símbolos gráficos en los párrafos siguientes.

1.6 Riesgos residuales

La máquina está diseñada de modo que se reduzcan al mínimo los riesgos para la seguridad de las personas que van a interactuar. Durante el diseño no posible técnicamente eliminar al completo las causas de riesgo, por lo tanto es absolutamente necesario hacer referencias a las prescripciones y a la simbología indicadas a continuación.

PARTES CONSIDERADAS (si están presentes)	RIESGO RESIDUAL	MODALIDAD	PRECAUCIONES
Batería de intercambio térmico	Pequeños cortes.	Contacto	Evitar el contacto, usar guantes protectores.
Ventiladores y rejillas del ventilador.	Lesiones	Introducción de objetos pun- zantes a través de las rejas con los ventiladores en funcio- namiento.	No insertar objetos de ningún tipo dentro de las rejas de los ventiladores.
Interior unidad: compresores y tuberías de descarga del gas.	Quemaduras	Contacto	Evitar el contacto, usar guantes protectores.
Interior unidad: cables eléctricos y partes metálicas.	Quemaduras graves.	Defectos de aislamiento de los cables de alimentación, partes metálicas en tensión.	Protección eléctrica adecuada de las líneas de alimentación; precaución máxima al efectuar la conexión a tierra de las partes metálicas.
Exterior unidad: zona próxima a la unidad.	Intoxicaciones, quemaduras graves.	Incendio a causa de corto cir- cuito o sobrecalentamiento de la línea de alimentación del cuadro eléctrico de la unidad.	Sección de los cables y sistemas de protección de la línea de alimentación eléctrica conforme a las normativas vigentes.
Válvula de seguridad de baja presión.	Intoxicaciones, quemaduras graves.	Presión de evaporación eleva- da por el uso incorrecto de la máquina durante los trabajos de mantenimiento.	Controlar con cuidado el valor de la presión de evaporación durante las operaciones de mantenimiento.
Válvula de seguridad de alta presión.	Intoxicaciones, quemaduras graves, pérdida de oído.	Intervención de la válvula de seguridad de alta presión con la zona del circuito frigorífico abierta.	Evitar cuanto sea posible la apertu- ra del espacio del circuito frigorífico; controlar con cuidado el valor de la presión de condensación; usar to- dos los dispositivos de protección.

1.7 Simbología de seguridad

Símbolos de seguridad individuales conforme a la norma ISO 3846-2:

PROHIBIDO

Un símbolo negro dentro de un círculo rojo con una línea diagonal roja indica una acción que no debe ser efectuada.

ADVERTENCIA

Un símbolo gráfico negro dentro de un triángulo amarillo con bordes negros indica un peligro.

ACCIÓN OBLIGATORIA

Un símbolo blanco dentro de un círculo azul indica una acción que debe realizarse para evitar un riesgo.

Símbolos de seguridad combinados conforme a la norma ISO 3864-2:

El símbolo gráfico de advertencia está completo con informaciones suplementarias de seguridad.

1.8 Símbolos de seguridad utilizados

PELIGRO GENERAL

Observar todas las indicaciones colocadas junto al símbolo. La falta observación de las indicaciones puede generar situaciones de riesgo con posibles daños a la salud del operador y del usuario en general.

PELIGRO ELÉCTRICO

Observar todas las indicaciones puestas en el símbolo.

El símbolo indica componentes de la máquina o, en el presente manual, identifica acciones que pueden generar riesgos eléctricos.

PARTES MÓVILES

El símbolo indica componentes de la máquina en movimiento que pueden ser peligrosos.

SUPERFICIES CALIENTES

El símbolo indica componentes de la máquina a elevada temperatura que pueden generar riesgos.

SUPERFICIES CORTANTES

El símbolo indica componentes o partes de la máquina que al contacto pueden generar heridas por corte.

TOMA DE TIERRA

El símbolo indica el punto de la máquina para realizar la conexión a tierra.

LEER Y COMPRENDER LAS INSTRUCCIONES

Leer las instrucciones de la máquina antes de efectuar cualquier operación.

MATERIAL RECUPERABLE O RECICLABLE

1.9 Límites y usos no permitidos

La máquina ha sido diseñada y construida exclusivamente para los usos descritos en el párrafo "Límites de uso" del manual técnico. Cualquier otro uso está prohibido porque puede generar riesgos para la salud de los operadores y de los usuarios.

La unidad no está adaptada a las operaciones en ambientes:

- Con presencia de atmósfera potencialmente explosiva o excesivamente polvorientas;
- En los cuales se producen vibraciones;
- En los cuales existen campos electromagnéticos;
- En los cuales existe un ambiente agresivo.

1.10 Identificación de la unidad

Cada unidad incorpora una tarjeta identificativa que indica las principales informaciones de la máquina. Los datos de la tarjeta pueden diferir de los indicados en el manual técnico ya que en este último vienen indicados los datos de las unidades estándar sin accesorios. Para las informaciones eléctricas no presentes en la etiqueta hay que hacer referencia al esquema eléctrico. A continuación se indica un ejemplo de etiqueta.

La etiqueta identificativa no se debe eliminar nunca de la unidad.

2. SEGURIDAD

2.1 Advertencias sobre sustancias tóxicas potencialmente peligrosas

2.1.1 Identificación del tipo de fluido utilizado: R410A

- Difluorometano (HFC-32) 50% en peso CAS No.: 000075-10-5
- Pentafluoroetano (HFC-125) 50% en peso CAS No.: 000354-33-6

2.1.2 Identificación del tipo de aceite utilizado

El aceite utilizado en el circuito frigorífico de la unidad es del tipo poliéster. En cada caso hacer siempre referencia a lo indicado en la tarjeta del compresor.

Para más información acerca de las características del fluido frigorífico y del aceite utilizado debe mirar la tarjeta de seguridad disponible en los fabricantes de refrigerante y de aceite lubricante.

Principales informaciones ecológicas acerca del fluido frigorífico utilizado.

PROTECCIÓN AMBIENTAL: Leer atentamente las informaciones ecológicas y las instrucciones siguientes.

2.1.3 Persistencia y degradación

Los fluidos frigoríficos utilizados se descomponen en la atmósfera inferior (troposfera) con relativa rapidez. Los productos descompuestos son altamente dispersables y por eso presentan una concentración muy baja. No influyen en el humo fotoquímico o no entran después los compuestos orgánicos volátiles VOC (según lo establecido en la línea del acuerdo de UNECE). Los refrigerantes R407C (R22, R125 e R134a) no dañan el ozono. Estas sustancias están reguladas por el protocolo de Montreal (revisión de 1992) y de la regulación CE nº2037/200 del 29 Junio 2000.

2.1.4 Efectos del tratamiento de los vertidos

Las descargas en la atmósfera de estos productos no provocan contaminación del agua a largo tiempo.

2.1.5 Control de la exposición y protección individual

Utilizar indumentaria y guantes de protección; protegerse siempre los ojos y la cara.

2.1.6 Límites de exposición

R410A

HFC-32 TWA 1000 ppm HFC-125 TWA 1000 ppm

2.2 Manipulación

Los usuarios y el personal de mantenimiento deben ser adecuadamente informados de los riesgos debidos a la manipulación de sustancias potencialmente tóxicas. La falta de observación de las indicaciones anteriores puede causar daños a las personas ó dañar la unidad.

2.3 Prevenir la instalación de elevadas concentraciones de vapor

Las concentraciones atmosféricas de refrigerante deben ser reducidas al mínimo y mantener lo mejor posible al mínimo nivel, por debajo del límite de exposición profesional. Los vapores son más pesados que el aire, y concentraciones peligrosas pueden formarse en el suelo, donde la ventilación generalmente es escasa. En este caso, asegurarse una adecuada ventilación. Evitar el contacto con el fuego y superficies calientes porque se pueden formar productos tóxicos e irritantes. Evitar el contacto del líquido en los ojos ó en la piel.

2.4 Proceder en caso de fuga accidental de refrigerante

Asegurarse una adecuada protección personal (usando medios de protección de las vías respiratorias) durante las operaciones de limpieza. Si las condiciones son suficientemente seguras, aislar la fuente de pérdida. Si la cantidad es limitada, vaciar el evaporador con del materias a condiciones que se asegure una adecuada ventilación. Si la pérdida es relevante, ventilar adecuadamente el área. Contener el material con arena, tierra u otro material absorbente adecuado. Evitar que el refrigerante entre en la descarga, en el saneamiento, en los sótanos o en los puestos de trabajo, porque se pueden formar vapores sofocantes.

2.5 Informaciones toxicológicas principales en el tipo de fluido frigorífico utilizado

2.5.1 Inhalación

Una elevada concentración atmosférica puede causar efectos anestésicos con posibles pérdidas de consciencia. Prolongadas exposiciones pueden causar anomalías del ritmo cardiaco y causar una muerte imprevista. Concentraciones muy elevadas pueden causar asfixia por el reducido contenido de oxígeno en la atmósfera.

2.5.2 Contacto con la piel

Salpicaduras de líquido pulverizado pueden producir quemaduras. Es poco probable que sea peligroso por la absorción cutánea. El contacto prolongado o repetido puede causar la eliminación de la grasa cutánea, por lo que puede producir una dermatitis.

2.5.3 Contacto con los ojos

Salpicaduras de líquido pulverizado pueden producir quemaduras

2.5.4 Ingestión

También altamente improbable, pueden provocar quemaduras.

2.6 Medidas de primeros auxilios

Seguir las advertencias y proceder rápidamente con los primeros auxilios indicados.

2.6.1 Inhalación

Quitar al herido de la fuente de exposición, mantenerlo caliente y en reposo. Suministrar oxígeno si es necesario. Practicar la respiración artificial si el herido no respira. Si hay paro cardiaco efectuar un masaje cardiaco externo. Solicite asistencia médica.

2.6.2 Contacto con la piel

En caso de contacto con la piel lavar enseguida con agua templada. Descongelar el tejido epidérmico con agua. Quitar la ropa contaminada. La ropa puede pegarse a la piel en caso de quemaduras. Si tiene irritación solicite asistencia médica.

2.6.3 Contacto con los ojos

Lavar inmediatamente con solución de lavado ocular ó con agua limpia, mantener los párpados abiertos durante diez minutos. Solicite asistencia médica.

2.6.4 Ingestión

No inducir el vómito. Si la persona herida está consciente, hacer que se lave la boca con agua y hacerle beber 200 300 ml de agua. Solicite asistencia médica.

2.6.5 Curas médicas posteriores

Tratamiento sintomático y terapia de soporte. No suministrar adrenalina ni fármaco tranquilizantes después de la exposición, por el riesgo de arritmia cardiaca.

3. CARACTERÌSTICAS TÉCNICAS

3.1 Descripción de la unidad

La serie WSA es un producto destinado a la climatización de pequeños ambientes, tales como: habitaciones, tiendas, oficinas, bares. El producto, cuidadamente construido, utiliza procesos de condensación de agua, por medio de un intercambiador de calor de placas, favoreciendo la construcción de unidades compactas, eficientes y extremadamente silenciosas.

Las versiones disponibles permiten elegir la solución más adecuada para cada instalación.

3.1.1 Carpintería

Todas las unidades de la serie WSA están hechas de acero galvanizado y recubierto de polvo de poliuretano en el horno a 180°C para asegurar la mejor resistencia a los agentes atmosféricos. La chapa es desmontable para agilizar la inspección y mantenimiento de los componentes internos. Todos los tornillos y remaches exteriores son de acero inoxidable. El color de la carpintería es RAL 9018.

3.1.2 Circuito frigorífico

El circuito frigorífico está realizado con componentes de las principales empresas internacionales y según la normativa vigente ISO 97/23. Cada circuito frigorífico es independiente del resto de forma que un posible problema en un circuito no interfiere en el funcionamiento del resto. El gas refrigerante que utilizan es el R410A. El circuito frigorífico incluye: indicador del líquido, filtro deshidratador, válvula termostática con regulador externo, válvula de inversión de ciclo (sólo para las unidades reversible), válvula antiretorno (sólo para unidades reversible), depósito de líquido (sólo para unidades reversible), válvula Schrader para mantenimiento y control, dispositivos de seguridad (según la normativa PED).

3.1.3 COMPRESOR

Los compresores son de tipo scroll (rotativo solo en el tamaño 06, 08, 10), con resistencia del cárter y relé térmico de protección insertado en la bobina eléctrica. La resistencia del cárter está siempre en stand-by. Para la inspección de los compresores se atraviesa el panel frontal de la unidad que permite el mantenimiento también con la unidad en funcionamiento.

3.1.4 Condensador y evaporador

Los condensadores y evaporadores son del tipo de placas soldadas y están hechos en acero inoxidable AISI 316. El uso de este tipo de intercambiador reduce enormemente la carga de gas refrigerante de la unidad, respecto a los tradicionales evaporadores tubulares, aumentan el rendimiento frigorífico de las cargas parciales. Los evaporadores están aislados utilizando materiales de célula cerrada y pueden estar equipados con resistencia eléctrica antihielo (accesorio). En las versiones reversible los condensadores están aislados de fábrica utilizando materiales de célula cerrada. Cada evaporador está protegido de una sonda de protección antihielo.

3.1.6 Cuadro eléctrico

El cuadro eléctrico está fabricado en conformidad de la normativa europea 73/23 y 89/336. El acceso al cuadro se realiza desmontando la chapa frontal de la máquina teniendo en cuenta que hay que colocar en la posición OFF el interruptor general de bloqueo de puerta. El grado de protección del cuadro es IP55. Todas las unidades WSA incorporan de serie el relé de secuencia de fases que desactiva el funcionamiento del compresor en el caso de que las fases estén cambiadas (el compresor scroll no puede funcionar con el sentido de rotación contrario).

Los siguientes componentes están instalados de serie: interruptor general, interruptor magnetotérmico (como protección de la bomba y del ventilador), contactores/térmicos para compresores, interruptor magnetotérmico del circuito auxiliar, relés para compresores, ventiladores y bombas. El cuadro también incluye el terminal de contacto para el control ON/OFF remoto, la conmutación verano/invierno (para la unidad reversible) y los contactos de alarma general.

3.1.7 Microprocesador

Todas las unidades WSA están equipadas de control de microprocesador. El microprocesador controla las siguientes funciones: regulación de la temperatura del agua, protección antihielo, temporización del compresor, secuencia de temporización compresor, secuencia de arranque del compresor, reset alarma, gestión alarma y led de funcionamiento. En su pedido, el microprocesador puede estar relacionado al sistema BMS de control remoto.

El control AUTOADAPTATIVO ACTIVO es un sistema avanzado que monitoriza continuamente la temperatura del agua entrante y del agua de salida de la unidad anticipando las fluctuaciones de la carga y gestionando la temperatura del agua de salida. De este modo se aumenta el grado de protección de la unidad, adaptando los ciclos de ascensión dentro y fuera en función de las características inerciales del sistema. El sistema de control autoadaptativo ACTIVO, permite la reducción del contenido de agua mínima del sistema de los tradicionales 12-15 litros/kw frigoríficos a los 5 litros/kw frigoríficos de la unidad WSA. Gracias al contenido del agua reducida de la unidad WSA puede ser utilizada en sistemas con pequeños depósitos de acumulación con evidentes ventajas en términos de reducción de las dimensiones de la máquina, de las dispersiones térmicas y del coste de la instalación.

3.1.8 Dispositivos de control y protección

Todas las unidades incorporan de serie los siguientes dispositivos de control y protección:

Sonda de temperatura del agua de retorno, presostato de alta presión de rearme manual, presostato de baja presión de rearme automático, dispositivo de seguridad de alta presión, protección térmica del compresor, flusostato mecánico de palas en el evaporador.

3.2 Otras versiones

3.2.1 Versión reversible (HP)

La versión reversible incluye válvula de inversión de ciclo a 4 vías y está preparada para la producción de agua caliente con temperaturas de hasta 50°C. Están fabricadas con depósito de líquido y con una segunda válvula termostática para optimizar la eficiencia del circuito frigorífico respectivamente tanto en calefacción como en refrigeración. El microprocesador está configurado para realizar el desescarche automático (que se habilita en condiciones ambientales desfavorables) y para la conmutación verano/invierno.

3.2.2 Versión motoevaporante (EV)

La versión motoevaporante se suministra sin carga refrigerante (solo carga nitrógeno) y sin condensador. El control microprocesador está presente en toda la unidad.

3.3 Descripción accesorios

3.3.1 Versión silenciada (LS)

Esta versión comprende el aislamiento acústico de la unidad (compresor+ intercambiador) con material aislante de alta intensidad y la interposición de una capa bituminosa.

3.3.2 Recuperador de calor parcial (RP00) (sólo modd.014 ÷ 041)

Formado por un intercambiador de placas soldadas en acero inoxidable AISI 316, de forma que puede recuperar el 20 % de la carga térmica cediéndola al condensador.

3.3.3 Antivibradores de muelles (KAVM)

Grupo de antivibradores que se montan en el suelo de la unidad. Se utilizan para evitar transmisiones de vibraciones (y también ruido) a la estructura del edificio.

3.3.4 Antivibradores de goma (KAVG)

Se ponen tras la unidad y el suelo para evitar las transmisiones de vibraciones (y también ruido) a la estructura del edificio.

3.3.5 Arrangue electrónico (DSSE)

Es utilizado para reducir la corriente de arranque de la unidad; la reducción media es del 40% de la corriente de arranque nominal.

3.3.6 Manómetros (MAML)

Utilizados para medir las presiones en el circuito frigorífico.

3.3.7 Kit válvula presostática para versión solo frío (VPSF)

Utilizada para reducir el consumo de agua en el intercambiador lado fuente.

3.3.8 Panel control remoto (PCRL)

Permite el control a distancia de todos los parámetros de la unidad.

3.3.9 RS485 Placa de comunicación serial con protocolo MODBUS (INSE)

Es utilizada para conectar la máquina aun sistema BMS utilizando el protocolo MODBUS.

3.3.10 Válvula modulante de dos vías para el control del consumo agua lado fuente (4-20 mA; 0-10 V) (V2MO)

Válvula modulante de 2 vías, instalada en fábrica sobre el circuito hidráulico lado fuente, permite optimizar el consumo de agua de pozo en función de la temperatura del agua disponible. La válvula está comandada por el control microprocesador de la unidad mediante señal modulante 0-10V. En el caso de ausencia de tensión de alimentación la válvula está normalmente cerrada.

3.4 Datos técnicos

WSA ÷ WSA/HP		06	08	10	14	16	21	26	31	36	41
Potencia frigorífica (EN14511) (1)	kW	5,9	7,5	9,0	14,9	17,4	22,0	30,3	34,3	38,2	45,0
Potencia absorbida tot. (EN14511) (1)	kW	1,5	1,8	2,2	3,6	4,2	5,1	6,9	7,8	8,7	10,2
EER (EN14511) (1)	w/w	3,9	4,2	4,1	4,1	4,1	4,3	4,4	4,4	4,4	4,4
Caudal agua lado fuente	m³/h	1,3	1,62	1,9	3,2	3,7	4,7	3,2	7,3	8,1	9,6
Pérdida carga lado fuente	kPa	25,7	28,1	40,3	47,1	44,7	47,5	10,4	43,9	54,3	50,2
Caudal agua lado instalación	m³/h	1	1,3	1,54	2,6	3	3,4	5,3	5,9	6,5	7,7
Pérdida carga lado instalación	kPa	33	31,1	44,5	34,3	46,6	56,1	37,2	45,7	56,5	48
Potencia frigorífica (EN14511) (2)	kW	8,1	10,2	12,2	20,4	23,5	29,5	40,3	45,5	50,7	60,3
Potencia absorbida tot. (EN14511) (2)	kW	1,4	1,8	2,2	3,5	4,3	5,4	7,1	8,0	9,1	10,4
EER (EN14511) (2)	w/w	5,8	5,7	5,5	5,8	5,5	5,5	5,7	5,7	5,6	5,8
Caudal agua lado fuente	m³/h	1,6	2,1	2,5	4,1	4,8	6	4,1	9,3	10,4	12,3
Pérdida carga lado fuente	kPa	43,3	46,7	66,4	78,5	74	78,5	17	70,9	87,9	82,1
Caudal agua lado instalación	m³/h	1,4	1,8	2,1	3,5	4	5,1	7,1	7,9	8,7	10,4
Pérdida carga lado instalación	kPa	63	58,1	82,2	64,9	85,8	102,3	66,3	81,6	100,5	87,1
Potencia térmica (EN14511) (3)	kW	7,0	8,8	10,6	17,2	20,3	25,3	34,3	42,6	47,9	52,7
Potencia absorbida tot. (EN14511) (3)	kW	1,5	1,8	2,2	3,6	4,2	5,1	6,9	7,9	8,8	10,3
COP (EN14511) (3)	w/w	4,7	4,9	4,8	4,8	4,8	5,0	5,0	5,4	5,4	5,1
Caudal agua lado fuente	m³/h	1,6	2	2,4	3,9	4,6	5,8	4,4	9,9	11,2	12,1
Pérdida carga lado fuente	kPa	46,8	50,2	71,8	79,6	80,6	131,6	26,2	78,5	99	88,8
Caudal agua lado instalación	m³/h	1,2	1,5	1,8	3	3,5	4,4	6,6	7,4	8,3	9,1
Pérdida carga lado instalación	kPa	44	37	53	41	57	41	43	54	68	70
Potencia térmica (EN14511) (4)	kW	6,7	8,4	10,2	16,5	19,5	24,4	32,7	40,7	45,8	50,5
Potencia absorbida tot. (EN14511) (4)	kW	1,9	2,3	2,8	4,5	5,2	6,3	8,6	9,9	10,9	12,5
COP (EN14511) (4)	w/w	3,5	3,6	3,6	3,7	3,8	3,9	3,8	4,1	4,2	4,0
Caudal agua lado fuente	m³/h	1,4	1,8	2,1	3,4	4,1	5,2	3,9	8,8	10	10,8
Pérdida carga lado fuente	kPa	36,3	38,9	56,1	62,5	63,6	106,2	20,6	61,7	78,9	71,3
Caudal agua lado instalación	m³/h	1,2	1,5	1,8	2,9	3,4	4,3	6,3	7,1	8	8,8
Pérdida carga lado instalación	kPa	41	34	50	38	53	39	39	50	63	64
Alimentación							400/3+N/50				
Corriente de arranque	Α	60	67	98	64	75	95	118	118	140	174
Corriente máxima absorbida	Α	12,8	17,1	22	11,3	15	16	22	25	31	34
Compresores / Circuitos	n°	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Potencia sonora (5)	dB(A)	51	52	52	54	54	60	60	62	64	64
Presión sonora (6)	dB(A)	43	44	44	46	46	52	52	54	56	56

Las prestaciones están referidas a las siguientes condiciones:

⁽¹⁾ Refrigeración: Temperatura agua evaporador entrada/salida 12/7°C, temperatura agua condensador entrada/salida 30/35°C.

Unidad sin válvula presostática.

⁽²⁾ Refrigeración: Temperatura agua evaporador entrada/salida 23/18°C, temperatura agua condensador entrada/salida 30/35°C.

Unidad sin válvula presostática.

⁽³⁾ Calefacción: Los datos están referidos a unidad provista de válvula presostática: temperatura agua condensador entrada/salida 30/35°C, temperatura agua evaporador entrada/salida 10/7°C.

⁽⁴⁾ Calefacción: Los datos están referidos a unidad provista de válvula presostática: temperatura agua condensador entrada/salida 40/45°C, temperatura agua evaporador entrada/salida 10/7°C.

⁽⁵⁾ Potencia sonora según ISO 9614 (versión LS).

⁽⁶⁾ Presión sonora en campo abierto a una distancia de 10 m, Q = 2 según ISO 9614 (versión LS).

WSA/EV		06	08	10	14	16	21	26	31	36	41
Potencia frigorífica (7)	kW	5,1	6,5	7,9	13,1	15,3	19,5	26,6	30,0	33,7	39,8
Potenza assorbita compresores (7)	kW	1,9	2,4	2,9	4,6	5,3	6,4	8,9	10,2	11,1	12,7
Caudal de agua ⁽⁷⁾	m³/h	0,9	1,1	1,4	2,2	2,6	3,3	4,6	5,1	5,8	6,8
Pérdida carga lado instalación	kPa	24,7	23,4	34,3	26,5	36	44,1	27,6	35	43,9	37,5
Corriente de arranque	Α	60	67	98	64	75	95	118	118	140	174
Corriente máxima absorbida	Α	12,8	17,1	22	11,3	15	16	22	25	31	34
Alimentación	V/Ph/Hz	230/1/50	230/1/50	230/1/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
Compresores / Circuitos	n°	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Potencia sonora (5)	dB(A)	51	52	52	54	54	60	60	62	64	64
Presión sonora ⁽⁶⁾	dB(A)	43	44	44	46	46	52	52	54	56	56

Las prestaciones están referidas a las siguientes condiciones:

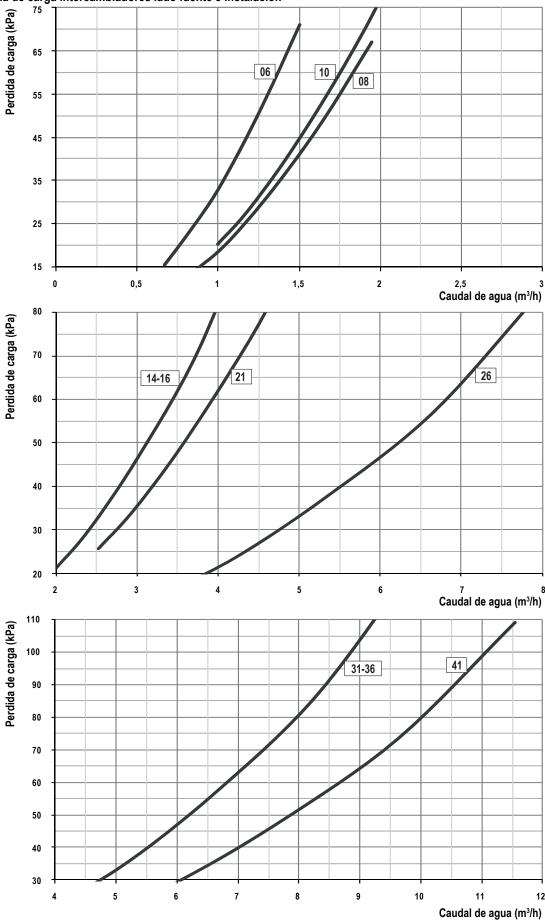
- (7) Para versión EV temp. cond. 50°C, temp. entrada/salida 12/7°C.
- (5) Potencia sonora según ISO 9614 (versión LS).
- (6) Presión sonora en campo abierto a una distancia de 10 m, Q = 2 según ISO 9614 (versión LS).

3.4.1 Recuperador de calor parcial

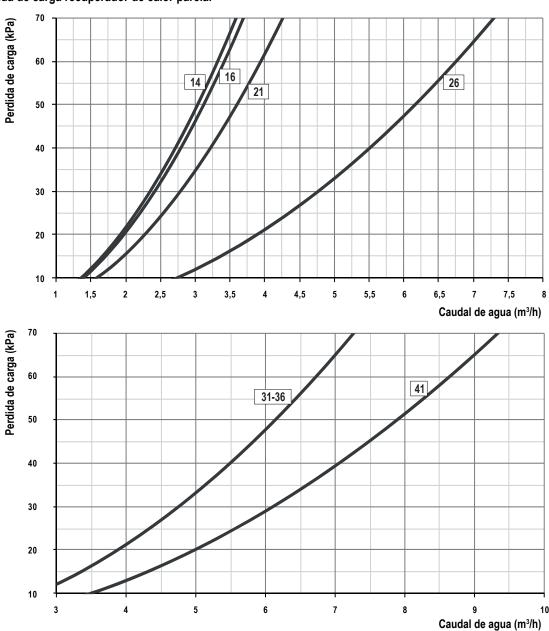
Mod.		14	16	21	26	31	36	41
Potencia nominal recuperador de calor parcial	kW	3,7	4,2	5,3	7,3	8,2	9,1	10,7
Caudal de agua	m³/h	0,6	0,7	0,9	1,3	1,4	1,6	1,9
Pérdida de carga	kPa	18,7	18,3	18,8	19,8	20,2	20,9	18,9

El valor nominal está referido a temperaturas del agua del intercambiador del lado fuente de 30/35°C y temperaturas del agua producida de 40/45°C (Δt 5°C).

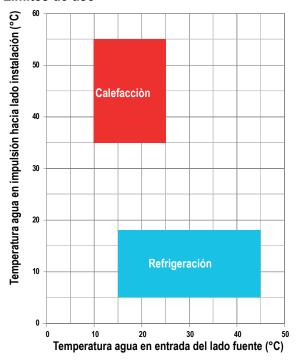
El recuperador de calor parcial se instala exclusivamente en fábrica.

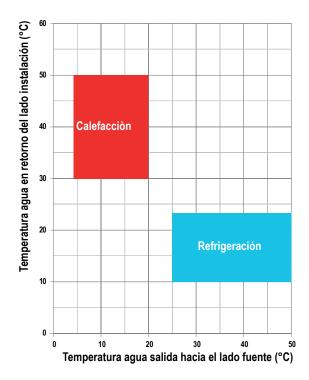

Con el recuperador de calor parcial se puede producir agua caliente de manera simultánea cuando el equipo está funcionando en modo refrigeración.

En las versiones reversibles, utilizando el recuperador de calor parcial en modo calefacción, se reduce consideradamente la potencia térmica cedida a la instalación.



3.4.2 Pérdida de carga intercambiadores lado fuente e instalación




3.4.3 Pérdida de carga recuperador de calor parcial

3.5 Límites de uso

3.5.1 Caudal de agua intercambiador lado instalación.

El caudal de agua nominal se refiere a un salto térmico entre la entrada y la salida del intercambiador de la instalación de 5°C. El caudal máximo admitido es aquel que presenta un salto térmico de 3°C. Valores superiores pueden provocar pérdidas de carga muy elevadas. El caudal mínimo de agua admitido es aquel con un salto térmico de 8°C. Caudal de agua insuficiente puede causar temperaturas anómalas en el circuito frigorífico con la intervención de los órganos de seguridad y la parada de la unidad.

3.5.2 Temperatura agua lado instalacióon (funcionamiento invernal)

Una vez que el sistema ha alcanzado el régimen, la temperatura a la entrada del intercambiador del lado instalación y/ó sanitario no debe bajar por debajo de los 30°C; valores más bajos pueden causar anomalías en el funcionamiento del compresor con posibilidad de roturas. La máxima temperatura del agua a la salida del intercambiador no debe superar los 55°C. En caso contrario la acción de los dispositivos de seguridad pararán el funcionamiento del equipo.

3.5.3Temperatura agua lado instalación (funcionamiento de verano)

La mínima temperatura admitida a la salida del intercambiador lado instalación es de 5°C: para temperaturas más bajas será necesario modificar la unidad. En este caso contactatar con nuestro servicio técnico.

La máxima temperatura del aqua producida es de18°C.

La unidad está construida siguiendo los estándares técnicos y las reglas de seguridad en vigor en la Comunidad Europea. La unidad está diseñada y exclusivamente para la calefacción y acondicionamiento y debe ser destinada a este uso compatiblemente con las características prestacionales. Queda excluida cualquier responsabilidad contractual y extracontractual de la Empresa por daños causados a personas, animales o cosas, por errores de instalaciones, de regulación y de mantenimiento o por uso impropio. Todos los usos expresamente no indicados en este manual no son permitidos.

En caso de operaciones fuera de estos valores se ruega contactar con la empresa.

3.6 Factores de corrección

3.6.1 Factores de corrección uso de glicol

Porcentaje de glicol	Punto de congelación (°C)	CCF	IPCF	WFCF	PDCF
10	-3.2	0.985	1	1.02	1.08
20	-7.8	0.98	0.99	1.05	1.12
30	-14.1	0.97	0.98	1.09	1.22
40	-22.3	0.965	0.97	1.14	1.25
50	-33.8	0.955	0.965	1.2	1.33

CCF: Factor corrección rendimiento. IPCF: Factor corrección potencia absorbida. WFCF: Factor corrección caudal de agua. PDCF: Factor corrección pérdida de carga.

Los factores de corrección del caudal de agua y de la pérdida de carga se deben aplicar a los valores obtenidos sin el uso de glicol. El factor de corrección del caudal de agua está calculado para poder mantener la misma diferencia de temperatura que la que se obtendría sin el uso de glicol. El factor de corrección de las pérdidas de carga se aplica al valor del caudal de agua correcto del factor de corrección del caudal de agua.

3.6.2 Factores de corrección diferente Δt

Diferencia temp. agua (°C)	3	5	8
CCCP	0.99	1	1.02
IPCF	0.99	1	1.01

CCCP = Factor corrección potencia frigorífica IPCF = Factor corrección potencia absorbida

3.6.3 Factores de corrección diferente factor de suciedad

Factor de suciedad	0.00005	0.0001	0.0002
CCCP	1	0.98	0.94
IPCF	1	0.98	0.95

CCCP = Factor corrección potencia frigorífica IPCF = Factor corrección potencia absorbida

3.7 Datos sonoros

	VERSIÓN SILENCIADA (LS)											
	Bandas de octavas (Hz)								L	w	Lp	
Mod.	63	125	250	500	1K	2K	4K	8K	٩D	dD/A\	AD/A)	
	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	
06	64,1	55,3	49,2	47,7	46,6	41,2	37,8	28,7	64,9	51	43	
08	65,1	56,3	50,2	48,7	47,6	42,2	38,8	29,7	65,9	52	44	
10	65,1	56,3	50,2	48,7	47,6	42,2	38,8	29,7	65,9	52	44	
14	67,1	58,3	52,2	50,7	49,6	44,2	40,8	31,7	67,9	54	46	
16	67,1	58,3	52,2	50,7	49,6	44,2	40,8	31,7	67,9	54	46	
21	73,1	64,3	58,2	56,7	55,6	50,2	46,8	37,7	73,9	60	52	
26	73,1	64,3	58,2	56,7	55,6	50,2	46,8	37,7	73,9	60	52	
31	75,1	66,3	60,2	58,7	57,6	52,2	48,8	39,7	75,9	62	54	
36	77,1	68,3	62,2	60,7	59,6	54,2	50,8	41,7	77,9	64	56	
41	77,1	68,3	62,2	60,7	59,6	54,2	50,8	41,7	77,9	64	56	

Lw: Nivel de potencia sonora calculado según ISO 9614.

Lp: Nivel de presión sonora medido en campo abierto a 10 metros de la unidad a la máxima velocidad, factor de direccionalidad Q=2, según ISO 9614.

El nivel de presión sonora en las versiones estándar, sin manta acústica en el compresor ni aislamiento del vano del compresor, es aproximadamente 1,5 dB(A) superior al modelo equivalente con versión silenciada LS.

4. INSTALACIÓN

4.1 Advertencias generales y uso de los símbolos

Antes de efectuar cualquier operación cada trabajador debe conocer perfectamente el funcionamiento de la máquina y de sus controles y haber leído y entendido todas las informaciones contenidas en el presente manual.

Todas las operaciones efectuadas sobre la máquina deben ser realizadas por el personal habilitado conforme a la legislación nacional vigente en el país de destino.

La instalación y el mantenimiento de la máquina debe ser realizada según las normas nacionales o locales en vigor.

No acercar ni introducir ningún objeto dentro de las partes en movimiento de la máquina.

4.2. Salud y seguridad de los trabajadores

El puesto de trabajo del trabajador debe mantenerse limpio, en orden y libre de objetos que puedan limitar el libre movimiento. El puesto de trabajo debe estar adecuadamente iluminado para las operaciones previstas. Una iluminación insuficiente o excesiva puede conllevar riesgos.

Asegurarse que esté siempre garantizada una óptima ventilación de los locales de trabajo y que los sistemas de aspiración estén siempre en funcionamiento, en óptimo estado y conforme a las disposiciones legislativas.

4.3 Dispositivos de protección individuales

Los trabajadores que efectúen la instalación y el mantenimiento de la máquina deben usar obligatoriamente los dispositivos de protección individuales previstos en la ley.

Calzado de protección.

Protección de los ojos.

Guantes de protección.

Protección de las vías respiratorias.

Protección de los oidos.

4.4 Recepción e inspección

En el momento de la instalación o cuando se deba intervenir en la unidad, es necesario atender escrupulosamente las normas indicadas en este manual, observar las indicaciones que hay dentro de la unidad y aplicarlas con precaución. La falta de observación de las normas indicadas puede causar situaciones peligrosas. En el momento de la recepción de la unidad, verificar su integridad: la máquina ha salido de fábrica en perfecto estado; daños eventuales deberán ser inmediatamente indicados al transportista y anotados en su hoja de entrega antes de firmarlo. La empresa debe ser informada en las siguientes 24 horas sobre el daño. El cliente debe crear un escrito en caso de daños relevantes.

Antes de aceptar el envío controlar:

- que la máquina no tenga daños durante el transporte;
- que el material corresponda a lo indicado en el documento de transporte.

En caso de daños o anomalías:

- anotar inmediatamente los daños en la hoja de transporte
- Informar a fábrica, dentro de las 24 horas posteriores a la recepción de la mercancía.
- En caso de daños relevantes compilar un informe escrito.

4.5 Almacenamiento

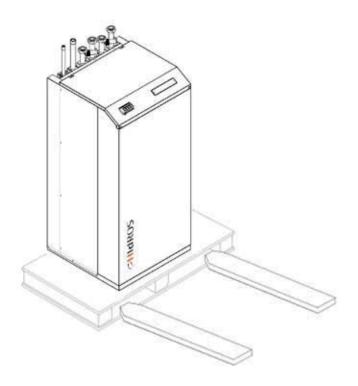
Si fuera necesario almacenar la unidad, vaciar el embalaje y luego cerrarlo. Si por cualquier motivo la máquina fuera desembalada atenerse a las siguientes indicaciones para prevenir daños, la corrosión y/o el deterioro:

- asegurarse que todas las aperturas estén bien tapadas o selladas.
- para limpiar la unidad no usar nunca vapor ni otros detergentes que puedan dañarla.
- quitar y dejar al responsable del edificio las llaves que sirvan para acceder al cuadro de control.

4.6 Desembalaje

El embalaje puede resultar peligroso para los trabajadores.

Se aconseja dejar la unidad embalada durante el transporte y quitar el embalaje en el momento de la instalación. El embalaje debe ser eliminado con cuidado evitando posibles daños a la unidad.

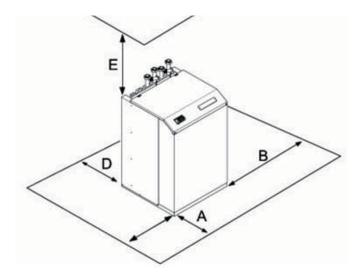

Los materiales que constituyen el embalaje pueden ser de naturaleza diversa (madera, cartón, nylon, etc.).

Los materiales de embalaje deben conservarse separados y entregados para su eliminación o para reciclar a la empresa correspondiente con el fin de reducir el impacto ambiental.

4.7 Transporte y manejo

Durante la descarga y colocación de la unidad debe tener cuidado en evitar movimientos bruscos para proteger los componentes internos. La unidad puede ser elevada con la ayuda de una carretilla elevadora ó mediante cintas de carga, teniendo cuidado de no dañar los paneles laterales y superiores de la unidad. La unidad debe ser siempre mantenida horizontalmente durante estas operaciones.

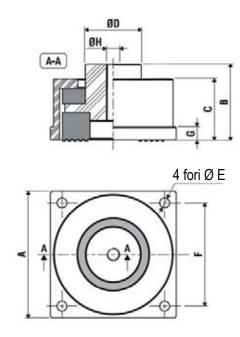
4.8 Posicionamiento y espacio técnico mínimo



La máquina debe ser instalada de modo que permita el mantenimiento ordinario y extraordinario. La garantía no cubre costes relativos a plataformas ó a medios de transporte necesarios para eventuales intervenciones.

El lugar de instalación se debe elegir de acuerdo con las normas EN 378-1 y 378-3. Se debe tener en cuenta todos los riesgos derivados de una posible fuga de refrigerante.

-Todos los modelos de la serie están diseñados y fabricados para instalación en interior. Las unidades transmiten al terreno un bajo nivel de vibraciones: se recomienda colocar antivibradores entre la base del equipo y el suelo. Para garantizar un mantenimiento adecuado del equipoo es necesario garantizar los espacios mínimos de servicio abajo indicados.

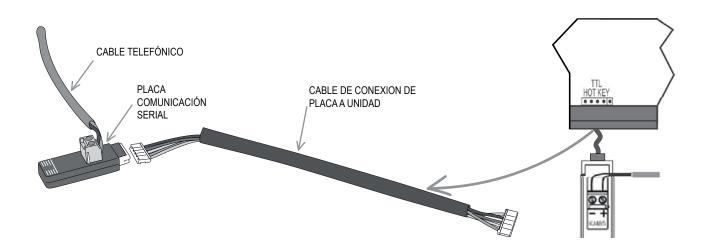


Mod.	Α	В	С	D	E
06	800	800	800	0	800
08	800	800	800	0	800
10	800	800	800	0	800
14	800	800	800	0	800
16	800	800	800	0	800
21	1000	800	800	0	500
26	1000	800	800	0	500
31	1000	800	800	0	500
36	1000	800	800	0	500
41	1000	800	800	0	500

4.9 Instalación de antivibradores de goma (KAVG)

Todas las unidades deben ser instaladas con antivibradores para aislar y disminuir al mínimo el nivel de vibraciones transmitidas al suelo y para reducir el nivel sonoro. Los antivibradores de goma están disponibles, como accesorios, en el catálogo. Los antivibradores de goma (opcionales) se suministran en una caja separada.

Mod.	Α	В	С	ΦD	ΦЕ	F	G	Н	
WSA 06÷10	52	36	27	23	5	42	5	M8	
WSA 14÷41	65	48	36	30	6	52	8	M10	


4.10 Placa de comunicación serial RS485 (INSE)

Placa serial de comunicación del sistema de supervisión (disponible sólo sistema de supervisión MODBUS-RS485).

La instalación de la placa permitirá a la unidad ser conectada a un sistema de con protocolo MODBUS-RS485. Este sistema permite monitorizar a distancia todos los parámetros de funcionamiento de la unidad y modificar los valores.

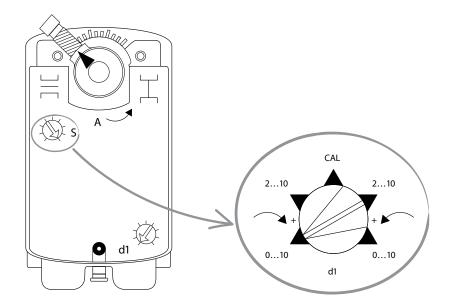
La placa de comunicación viene normalmente instalada en fábrica, en el caso en que se suministre separadamente es necesario respetar la polaridad de los cables como muestra en el esquema. La eventual inversión de la polaridad determinará el no funcionamiento de la unidad. El cable de la conexión de la supervisión deberá ser del tipo telefónico 2 x 0,25 mm2.

La unidad esté configurada en fábrica con dirección serial 1. En el caso de uso del sistema MODBUS es posible solicitar la lista de las variables contactando con la asistencia técnica.

4.11 Instalación bomba circuito lado fuente

En los últimos tiempos estamos asistiendo a un aumento continuo de las instalaciones (ver página 30) en las cuales la bomba del circuito lado fuente son de caudal variable.

El empresa necesita que, en el caso de unidades agua/agua resulta de gran importancia el correcto caudal de agua en el lado fuente con el fin de evitar problemas de congelación del intercambiador lado fuente. Para este fin, se indica a continuación que la bomba del pozo se debe utilizar exclusivamente para la unidad reversible y, preferiblemente, debe ser del tipo ON-OFF.


En el caso de utilizar la bomba lado fuente también para otros usos, (riego, etc...) y si necesitase una versión de caudal variable (inverter) será OBLIGATORIO instalar una válvula modulante V2MO. En estos casos, la bomba inverter DEBERÁ garantizar una presión constante a la entrada del circuito lado fuente del equipo reversible de al menos 3 bar, independientemente del tipo y de la cantidad de usos activos en cada momento.

En el caso de variación del caudal de agua en el circuito del lado fuente existe el riesgo de CONGELACIÓN del intercambiador condensador. En este caso la garantía se pierde inmediatamente.

La activación de la válvula modulante V2MO indica que hay un selector que se ha utilizado para variar el tipo de señal y el sentido de la rotación de la válvula. Cualquier manipulación puede comprometer el funcionamiento normal de la unidad y por lo tanto la seguridad.

4.12 Conexiones hidráulicas

Las conexiones hidráulicas deben seguirse conforme a las normativas nacionales o locales; las tuberías pueden ser realizadas en acero, chapa galvanizada ó en PVC. Las tuberías deben ser cuidadosamente dimensionadas en función del caudal de agua nominal de la unidad y de la pérdida de carga del circuito hidráulico. Todas las conexiones hidráulicas deben ser aisladas utilizando material de célula cerrada de un adecuado espesor. La unidad debe ser conectada a las tuberías utilizando las correspondientes juntas flexibles. Se recomienda instalar en el circuito hidráulico los siguientes componentes:

- Termómetros con vainas para la detección de la temperatura en el circuito.
- Válvulas manuales para aislar el refrigerante del circuito hidráulico.
- Filtro metálico (instalado en el tubo de retorno del sistema) con malla metálica no superior a 1mm (suministrado de serie).
- Purgador de aire, vaso de expansión, grupo de carga y válvula de desagüe.

La tubería de retorno del sistema debe de corresponder a la etiqueta "INGRESSO ACQUA UTENZE" de lo contrario el intercambiador del circuito lado instalación puede congelarse.

Es obligatorio instalar un filtro metálico (con malla no superior a 1mm) en las tuberías de retorno al sistema etiquetado "ACQUA UTENZE IN". Si el flujostato se manipula ó se altera, ó si no se ha instalado el filtro metálico la garantía se perderá inmediatamente. El filtro mantenerse limpio por lo que debe asegurarse que se realice un control periódico después de la instalación del equipo.

Todas las unidades vienen equipadas de fábrica con flujostato. El flujostato DEBE SER INSTALADO en las conexiones de agua externa (etiquetada como ACQUA UTENZE OUT); si el flujostato se altera, elimina, ó si el filtro de agua no estuviera presente en la unidad, la garantía se perderá inmediatamente.

El caudal de agua a través del intercambiador de la unidad no debe descender por debajo de un valor tal que provoque un Δ t de 8 °C medido a las condiciones siguientes:

Calefacción: 7°C Temperatura aire exterior bulbo seco **Refrigeración:** 35°C Temperatura aire exterior bulbo seco

35°C Temperatura salida agua 7°C Temperatura salida agua

4.13 Características químicas del agua

Antes de la puesta en marcha, la bomba de calor debe ser cargada con agua limpia; que deberá tener las siguientes características:

PH	6-8	Dureza total	Inferior a 50 ppm
Conductibidad eléctrica	Inferiores a 200 mV/cm (25°C)	lones azufre	Ausencia
lones cloro	Inferiores a 50 ppm	lones amoniaco	Ausencia
lones ácido sulfúrico	Inferiores a 50 ppm	lones silicio	Inferiores a 30 ppm
Residuos férricos	Inferiores a 0.3 ppm		

4.14 Mínimo contenido de agua circuito del lado de la instalación

Cada máquina frigorífica tiene necesitada de un contenido de agua mínimo dentro del circuito hidráulico de la instalación, con el fin de garantizar un correcto funcionamiento de la unidad, previniendo un elevado número de puesta en marcha y paradas de los compresores que puedan reducir el ciclo de vida de la unidad.

Modelo	06	08	10	14	16
Contenido agua mínimo (I)	30	40	45	70	80
Válvula seguridad (bar)	6	6	6	6	6

Modelo	21	26	31	36	41
Contenido agua mínimo (I)	100	140	150	170	200
Válvula seguridad (bar)	6	6	6	6	6

4.15 Instalación con circuito lado fuente abierto (Versión reversible)

El circuito del lado fuente de una unidad reversible es un circuito generalmente abierto, con agua subterránea ó de una reserva de agua. El circuito hidráulico del lado fuente DEBE incluir elementos de seguridad y protección de los 3 mayores problemas encontrados:

- Corrosión: generada por la composición química del agua subterránea.
- Atasco: causado por el barro y/o compuestos orgánicos e inorgánicos en suspensión en el agua subterránea.
- Congelación: causado por una temperatura muy baja del fluido del lado fuente.

4.16 Características químicas del agua de pozo

Ácido carbónico disuelto	(CO ₂)	< 5 mg/Kg	Gas cloruro libre	(Cl ₂)	< 1 mg/Kg
Agua oxigenada sulfúrica	(H ₂ S)	< 0,05 mg/Kg	Manganeso	(Mn)	< 0,1 mg/Kg*
Amoniaco	(NH ₃)	< 2 mg/Kg	Nitrato	(NO_3)	< 100 mg/Kg
Cloruro	(CI)	< 100 mg/Kg	Oxígeno	(O_2)	< 2 mg/Kg*
Cloruro libre	(CI)	< 0,5 mg/Kg	Sulfato	(SO ₄ ²)	< 50 mg/Kg
Conductividad eléctrica		>50µS/cm e <600µS/cm	Sulfitos	(SO ₃)	< 1 mg/Kg
Hierro	(Fe)	< 0,2 mg/Kg*	Valor pH		6,5 – 9,0

^{*} La superación de estos valores límite causa una obstrucción de barro en el intercambiador del lado instalación y en las tuberías.

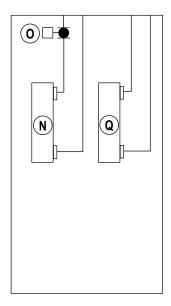
La garantía no cubre posibles daños causados por la corrosión, atascos y congelación si es imputable a la ausencia y/ó fallo de la instalación de los elementos de seguridad abajo descritos.

El uso del agua subterránea requiere generalmente de autorización por parte de la comunidad y/ó de la provincia de pertenencia. Remitirse a la autoridad competente.

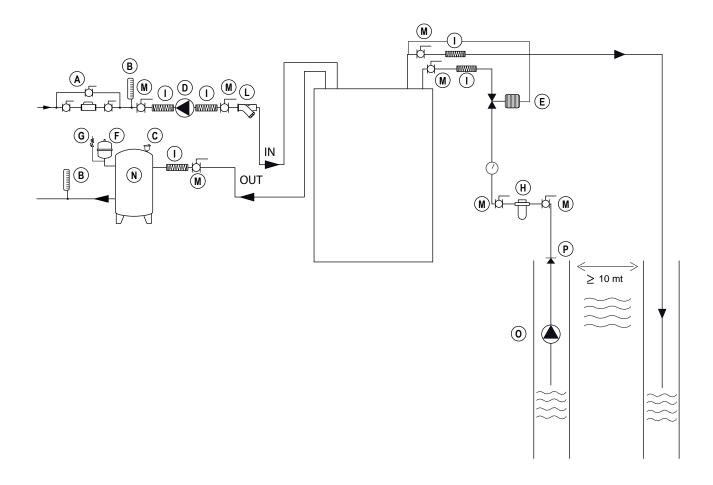
Exceder los valores límite indicados en la tabla puede causar atasco de barro en las tuberías y en el intercambiador de la unidad.

Mantener la calidad del agua subterrránea es competencia del usuario ó del personal de mantenimiento de la instalación.

La temperatura del agua subterránea a la entrada del intercambiador del lado fuente, funcionando en modo calor, no debe bajar nunca por debajo de los 7-8°C para evitar problemas de congelación en el circuito lado fuente. El agua además está a una temperatura bastante fría, cerca de 3-5°C, lo cual puede suponer un peligro en el caso de que la temperatura del agua de impulsión en un equipo reversible sea inferior a los 7°C porque en esta situación se encontraría muy próxima a la temperatura de formación de hielo.


La temperatura del agua subterránea a la entrada del intercambiador del lado fuente, funcionado en modo calor, no debe superar nunca los 25°C porque en ese caso se activarán los dispositivos de control y de seguridad de la unidad. En el caso aplicaciones con temperaturas del agua subterránea superiores a los 25°C se ruega ponerse en contacto con la empresa.

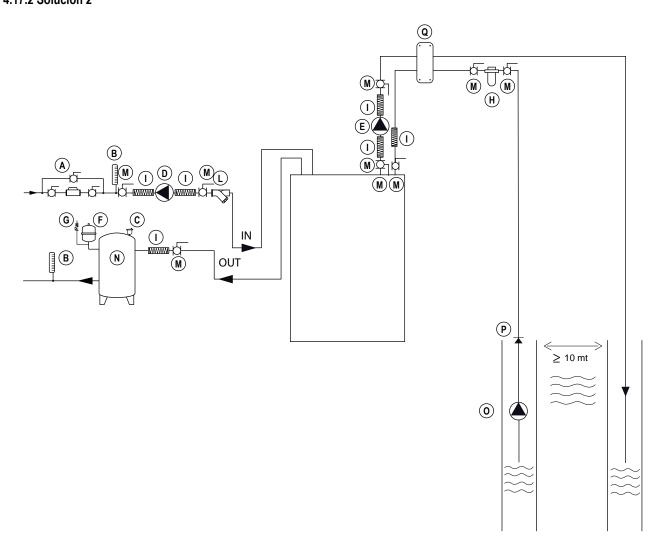
En el caso de instalaciones en lugares con temperaturas del agua próximas a las indicadas anteriormente se recomienda realizar un test de consumo de agua durante un período mínimo de 36 horas ininterrumpidas (realizarlo al finalizar el invierno).


4.17 Componentes hidráulicos

N	Intercambiador lado instalación	Q	Intercambiador lado fuente
0	Flujostato		

4.17.1 Solución 1

El esquema arriba indicado es el más económico y eficiente; sin embargo puede utilizarse unicamente en los casos en los cuales los parámetros de la calidad del agua se encuentren dentro de los límites indicados en la tabla. Se recomienda SIEMPRE hacer eventuales análisis del agua por parte de un técnico especializado. En el caso en el que no sea posible mantener los controles y parámetros de calidad del agua arriba indicados se deberá optar por un circuito hidráulico del lado fuente del tipo 2.


Α	Grupo de llenado automático	Н	Filtro fuente fuente
В	Termómetro	ı	Manguito antivibratorio
С	Válvula de vaciado	L	Filtro agua lado fuente
D	Flujostato	M	Válvula manual
E	Llave de desagüe del depósito	N	Depósito agua instalación
F	Vaso de expansión	0	Bomba pozo
G	Válvula de seguridad	Р	Válvula antiretorno

La bomba debe ser instalada con la impulsión dirigida hacia la conexión de entrada del agua de la unidad.

4.17.2 Solución 2

-El esquema arriba indicado es más seguro y fiable, implica la inserción de un intercambiador a placas agua-agua intermedio que protege el intercambiador del lado fuente de la unidad reversible de atascos, corrosión y congelación. Este circuito hidráulico está recomendado en aquellas instalaciones en las que no sea posible mantener el control y los parámetros de calidad del agua arriba indicados. La inserción del intercambiador intermedio conlleva una disminución de las prestaciones de la unidad y necesita una bomba de circulación auxiliar. Se ruega contactar con la empresa en el caso de requerir la selección del intercambiador intermedio.

Α	Grupo de llenado automático	1	Manguito antivibratorio
В	Termómetro	L	Filtro agua lado fuente
С	Válvula de vaciado	M	Válvula manual
D	Flujostato	N	Depósito agua
E	Llave de desagüe del depósito	0	Bomba pozo
F	Vaso de expansión	Р	Válvula antiretorno
G	Válvula de seguridad	Q	Intercambiador intermedio
Н	Filtro agua lado instalación		

La bomba debe ser instalada con la imppulsión dirigida hacia las conexiones de entrada de agua de la unidad.

4.18 Llenado del circuito hidráulico

- Antes del llenado, controlar que todas las válvulas de desagüe y vaciado estén cerradas.
- Abrir todos los purgadores de aire de las tuberías, dentro de la unidad, y de las unidades terminales de la instalación.
- · Abrir todas las válvulas de corte.
- Al inicio del llenado, abrir lentamente la válvula de agua del grupo de llenado externo de la unidad.
- Cuando el agua comienza a salir de por los purgadores de aire de las unidades terminales de la instalación, cerrarlos y continuar llenando la instalación hasta que el manómetro de agua indique una presión de 1,5 bar.

La instalación se debe llenar hasta una presión comprendida entre 1 y 2 bares. Es aconsejable que esta operación se repeta después de que la máquina haya funcionado durante un cierto número de horas (a causa de la presencia de burbujas de aire del sistema). La presión del sistema debe ser regularmente controlada y si desciende por debajo de 1 bar el contenido de agua debe aumentarse. Controlar en este caso el sellado de las juntas hidráulicas.

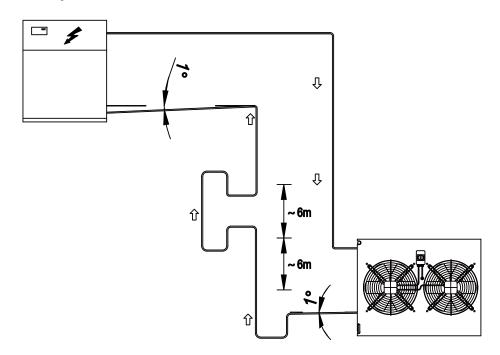
4.19 Vaciado de la instalación

- · Antes del vaciado, posicionar el interruptor general en posición OFF.
- · Asegurarse que la válvula del grupo de llenado esté cerrada.
- · Abrir la válvula de vaciado de la unidad y todos los purgadores de aire de la instalación y de las unidades terminales.

Si el fluido en el circuito hidráulico contiene antihielo, no se debe desagüar libremente ya que es contaminante. Debe ser recogido para una posible reutilización.

4.20 WSA/EV Conexión frigorífica para unidad motoevaporanti

Las unidades en versión WSA/EV deben conectarse al intercambiador del lado fuente mediante tubería frigorífica. El intercambiador del lado fuente viene equipado de fábrica con un seccionador general y regulador de giros de los ventiladores. Para las conexiones frigoríficas debe consultar los siguientes párrafos.

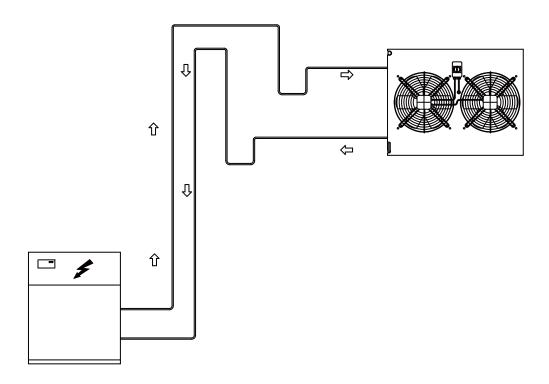

Para las unidades en versión WSA/EV, el trazado de las tuberías frigoríficas está condicionado por la distribución que tenga el edificio y su estructura. La distancia de las tuberías en cada caso debe ser lo más corta posible, de forma que se reduzca la pérdida de carga y la carga de refrigerante presente en el circuito frigorífico.

Las líneas frigoríficas deben aislarse y la distacia máxima de las mismas podrá ser de hasta 30 metros.

La empresa está a su disposición para cualquier consulta, incluso en los posibles casos en los que se deban superar los límites arriba indicados.

4.20.1 Unidad WSA/EV: intercambiador lado fuente instalado por debajo del nivel del compresor

- En los tramos verticales hacia arriba, deben realizarse sifones, al menos cada 6 metros, para facilitar el retorno de aceite al compresor.
- En los tramos horizontales de la línea de impulsión se debe preveer una pendiente de al menos el 1% para favorecer el retorno de aceite al compresor.
- El diámetro de las tuberías se puede consultar en el esquema frigorífico, la sección de las mismas va en función del modelo seleccionado y de la longitud de la línea frigorífica.


Diámetro línea frigorífica para versiones EV

Distancia (m)	1	0	2	20		0
Mod.	gas [mm]	Líquido [mm]	gas [mm]	Líquido [mm]	gas [mm]	Líquido [mm]
06	10	10	12	10	12	10
08	12	10	12	10	12	10
10	12	10	12	10	16	12
14	16	12	16	12	16	16
16	16	12	16	16	16	16
21	16	16	18	16	18	16
26	18	16	18	16	22	16
32	18	18	22	18	22	18
36	18	18	22	18	22	18
41	22	18	22	18	28	18

4.20.2 Unidad WSA/EV: intercambiador lado fuente instalado por encima del nivel del compresor

- Realizar un sifón en la línea de impulsión y de retorno a la misma altura del intercambiador del lado fuente para evitar que el aceite caiga al compresor por gravedad cuando la unidad está parada.
- En los tramos horizontales de la línea de impulsión se recomienda preveer una pendiente de al menos el 1% para favorecer el retorno del aceite al compresor.

Carga refrigerante para línea del líquido

Diámetro línea líquido mm	Carga de refrigerante g/m	Diámetro línea líquido mm	Carga de refrigerante g/m
10	50	12	80
16	160	18	200

Factores de corrección potencia frigorífica

Mod.	Línea frigo = 0 mt.	Línea frigo = 10 mt.	Línea frigo = 20 mt.	Línea frigo = 30 mt.
WSA / EV	1	0,98	0,96	0,95

4.21 Conexiones eléctricas: informaciones preliminares de seguridad

El cuadro eléctrico está situado dentro de la unidad en la parte superior del espacio técnico donde se encuentran también varios componentes del circuito frigorífico. Para acceder al cuadro eléctrico, mover el panel frontal de la unidad.

La conexión eléctrica debe ser realizada según el esquema eléctrico adjuntado a la unidad y conforme a las normativas locales e internacionales.

Asegurarse que la línea de alimentación eléctrica de la unidad esté seccionada por encima de la misma. Asegurarse que el dispositivo seccionado esté cerrado ó que en la maneta de accionamiento haya un cartel de advertencia de no trabajar.

Verificar que la alimentación eléctrica corresponda a los datos nominales de la máquina (tensión, fases, frecuencia) indicados en el esquema eléctrico y en la etiqueta colocada en la unidad.

Los cables de alimentación deben ser protegidos contra los cortocircuitos y de la sobre carga por un dispositivo idóneo conforme a las normas y leyes vigentes.

La sección de los cables debe ser acorde a la calibración del sistema de protección y debe tener cuenta de todos los factores que puedan influir (temperatura, tipo aislante, longitud, etc.)

La alimentación eléctrica debe respetar los límites citados: en caso contrario la garantía se perderá inmediatamente.

El flujostato debe ser conectado siguiendo las indicaciones indicadas en el esquema eléctrico. No puentear nunca las conexiones del flujostato en los terminales. Se perderá la garantía si las conexiones del flujostato han sido alteradas ó conectadas de manera incorrecta.

Efectuar todas las conexiones de tierra previstas por las normativas y legislaciones vigentes.

Antes de iniciar cualquier operación asegurarse que la alimentación esté desconectada.

PROTECCIÓN ANTIHIELO:

Si está abierto, el interruptor general corta la alimentación eléctrica de las resistencias y de cualquier dispositivo antihielo presente en la unidad, incluso la resistencia del cárter del compresor. El interruptor general debe estar abierto sólo para operaciones de limpieza, mantenimiento ó reparación de la máquina.

4.22 Datos eléctricos

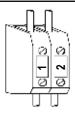
Los datos eléctricos indicados seguidamente se refieren a la unidad estándar sin accesorios. En todos los demás casos hacer referencia a los datos eléctricos indicados en los esquemas eléctricos adjuntos.

La tensión de alimentación no debe sufrir variaciones superiores al ± 10% del valor nominal y el desequilibrio entre las fases debe ser menor del 1% según la norma EN 60204. Si estas tolerancias no fueran respetadas se ruega contacten con nuestro servicio técnico.

Modelo		06	08	10	14	16
Alimentación elétrica	V/~/Hz	230/1/50	230/1/50	230/1/50	400/3+N50	400/3+N50
Circuito de control	V/~/Hz	24 V	24 V	24 V	24 V	24 V
Circuito auxiliar	V/~/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Sección línea	mm^2	1,5	4	4	4	4
Sección PE	mm ²	1,5	4	4	4	4

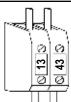
Modelo		21	26	31	36	41
Alimentación elétrica	V/~/Hz	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50
Circuito de control	V/~/Hz	24 V	24 V	24 V	24 V	24 V
Circuito auxiliar	V/~/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Sección línea	mm²	6	6	10	10	16
Sección PE	mm ²	6	6	10	10	16

Los datos eléctricos pueden cambiarse sin preaviso. Por eso es necesario hacer siempre referencia al esquema eléctrico adjunto a la unidad.


4.23 Conexión eléctrica

Las numeraciones de los conectores pueden cambiar sin previo aviso. Para realizar las conexiones es necesario SIEMPRE consultar el esquema eléctrico suministrado con el equipo.

4.23.1 Conexionado eléctrico remoto (opcional)


Todos los conectores indicados a continuación están presentes en el interior del cuadro eléctrico, todas las conexiones eléctricas mencionadas se encuentran en el regletero del cuadro eléctrico, todas las conexiones indicadas a continuación deben ser realizadas por cuenta del instalador.

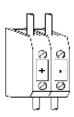
ON / OFF REMOTO

Para utilizar un dispositivo de on/off remoto, en puente debe ser sustituido con un interruptor conectado a los terminales 1 y 2.

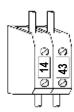
Contacto cerrado: unità ON. Contacto abierto: unità OFF.

CONMUTACIÓN REMOTA VERANO/INVIERNO

Para utilizar un dispositivo remoto de conmutación verano/invierno, el puente debe ser sustituido por un interruptor conectado a los terminales 13 y 43.


Contacto cerrado: unidad en INVIERNO. Contacto abierto: unidad en VERANO.

ALARMA GENERAL REMOTA


Para la señalización remota de una alarma general, conectar un dispositivo sonora o visual entre los terminales 90-91-92.

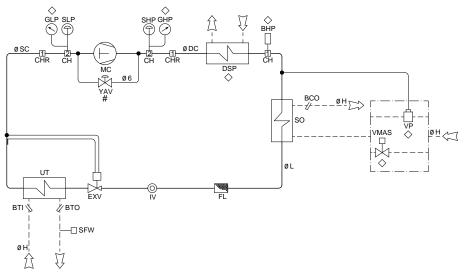
Contactos 90/91 NC (Normalmente cerrados) Contactos 91/92 NO (Normalmente abiertos)

PANEL CONTROL REMOTO

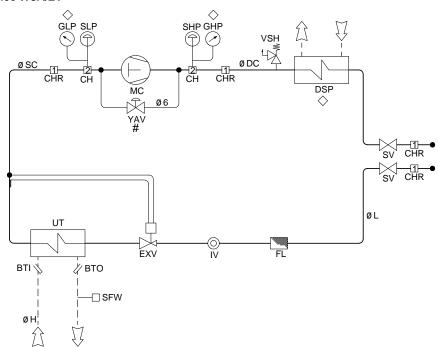
El panel control remoto permite gestionar todas las funciones de la unidad hasta una distancia máxima de 50 metros. El panel debe ser conectado a la unidad mediante 2 hilos de sección de 0,75 mm2 hasta una distancia máxima de 50 metros. Los cables de la alimentación de potencia deben ser separados de los hilos de conexión del panel de control remoto, para prevenir interferencias. El panel de control remoto debe ser conectado a los terminales + e -. El panel de control remoto no puede ser instalado en una zona con fuertes vibraciones, agentes corrosivos, muy sucio o con alta humedad. Dejar un espacio libre próximo a la apertura de ventilación.

FLUJOSTATO CIRCUITO INSTALACIÓN (SFW1)

Es utilizado para proteger el circuito evaporador de reducir el caudal de agua. Está conectado en fábrica a los termines 14 e 43.

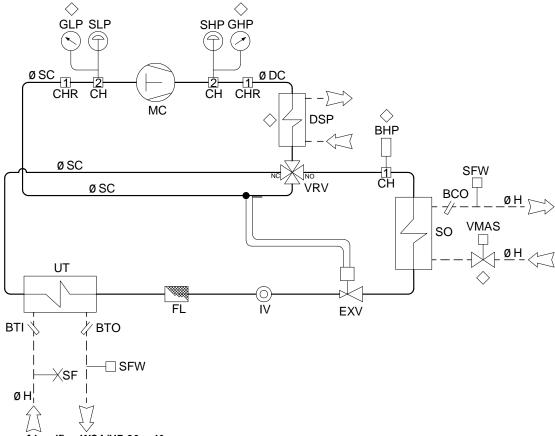


4.24 Esquemas frigoríficos

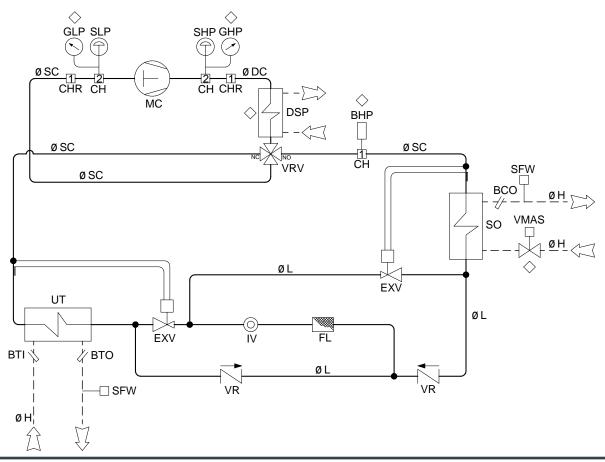

4.24.1 Leyenda componentes esquema frigorifícos

BCI	Sonda entrada agua lado fuente	LR	Depósito de líquido
BCO	Sonda salida agua lado fuente	MC	Compresor
BHP	Transductor de alta presión	SFW	Flujostato agua
BTI	Sonda entrada agua evaporador	SHP	Presostato alta presión
BTO	Sonda salida agua evaporador	SLP	Presostato baja presión
CH	Toma de carga	SO	Intercambiador lado fuente
CHR	Toma de carga 5/16 (r410)	SV	Llave
CN	Condensador	UT	Intercambiador lado instalación
DSP	Recuperador de calor	VMAS	Válvula modulante agua lado fuente
EXV	Válvula termostática	VP	Válvula presostática
FL	Filtro línea líquido	VR	Válvula de retención
GHP	Manómetro alta presión	VRV	Válvula inversión ciclo
GLP	Manómetro baja presión	VSH	Válvula de seguridad
IV	Visor de líquido	YL	Válvula solenoide línea líquido
#	Solo mod. 06 - 08 - 010 Monofase		

4.24.2 Esquema frigorífico WSA



4.24.3 Esquema frigorífico WSA/EV



4.24.4 Esquema frigorífico WSA/HP 04 ÷ 21

4.24.4 Esquema frigorífico WSA/HP 26 ÷ 40

5. PUESTA EN MARCHA

5.1 Verificaciones previas

Antes de poner en marcha la máquina es necesario efectuar controles previos de la parte eléctrica, hidráulica y frigorífica.

Los trabajos de puesta en marcha se deben efectuar en conformidad a las prescripciones de los apartados anteriores.

Nunca detener la unidad (para una parada temporal), abriendo el interruptor principal: este dispositivo debe utilizarse sólo per desconectar la unidad de la alimentación eléctrica en ausencia de paso de corriente, por ejemplo cuando la unidad está en OFF. Si la unidad no está alimentada, las resistencias del cárter tampoco tendrán tensión eléctrica por lo que existirá un peligro de rotura de los compresores al arrancar el equipo.

5.1.1 Antes de la puesta en marcha

Se pueden producir daños derivados de la falta de cuidado durante el transporte ó la instalación. Se recomienda comprobar antes de la instalación ó de la puesta en marcha que no existan fugas de refrigerante causados por roturas de capilares, de las tuberías del circuito frigorífico, de las conexiones de los presostatos,...debidas a vibraciones durante el transporte.

- Verificar que la máquina esté instalada conforme a las indicaciones de este manual.
- Verificar la conexión eléctrica y la correcta fijación de todos los terminales.
- Verificar que la tensión de las fases R S T sea la indicada en la etiqueta de la unidad.
- Verificar que la máquina esté conectada a la toma de tierra.
- · Verificar que no existan fugas de gas refrigerante.
- Controlar que no haya manchas de aceite que puedan ser sintomáticas de una fuga de refrigerante.
- Verificar que el circuito frigorífico esté en presión: utilizar los manómetros de servicio ó los de la máquina (opcional)
- Verificar que todas las tomas de servicio estén cerradas con las tapas correspondientes.
- Controlar que las resistencias eléctricas de los compresores estén alimentadas correctamente.
- · Controlar que las conexiones hidráulicas hayan sido instaladas correctamente y que se respeten las indicaciones de la etiqueta del equipo.
- Controlar que la instalación haya sido purgada correctamente.
- Verificar que la temperatura de los fluidos estén dentro de los límites operativos de funcionamiento.
- Antes de proceder al encendido del equipo, controlar que todos los paneles estén bien cerrados y fijados.

No modificar las conexiones eléctricas del equipo, de lo contrario terminará la garantía inmediatamente.

En el caso que esté presente, la resistencia eléctrica para los compresores deberá estar alimentada al menos 12 horas antes de la puesta en marcha (período de precalefacción) cerrando el interruptor general (la resistencia se alimenta automáticamente cuando el interruptor está cerrado). La resistencia trabaja correctamente si después de algunos minutos la temperatura del cárter del compresor es de 10÷15°C superior a temperatura ambiente.

En el caso de presencia de resistencia eléctrica para los compresores, durante las 12 horas del periodo de precalefacción es importante controlar si en el display de la unidad está escrito OFF ó que la unidad esté en stand-by. En caso de puesta en marcha accidental antes del transcurso del tiempo de precalefacción de 12 horas, los compresores se pueden dañar y la garantía se terminará inmediatamente.

5.1.2 Calibración componentes de control

Dispositivo		Set-point	Diferencial	Tipo Reset
Termostato de control (calefacción)	°C	30	2	
Termostato de control (refrigeración)	°C	23	2	
Termostato antihielo	°C	4	4	Manual
Presostato alta presión	Bar	30	7	Automático para 3 veces
Presostato baja presión	Bar	0.7	1.5	(luego manual)
Válvula agua de seguridad (Presente sólo en la versión A)	Bar	6		Automático

En el caso en el cual la modalidad de funcionamiento requerida para la unidad sea sólo de calefacción/refrigeración, el parámetro interno del microprocesador FS1 debe ser modificado de 2 a 1 para prevenir alarmas de configuración. Se ruega contactar con la empresa para cualquier consulta técnica.

5.1.3 Controles durante el funcionamiento

- Controlar el sentido de giro de los compresores y ventiladores. Si la rotación no es correcta desconectar inmediatamente el interruptor general y cambiar una cualquiera de las fases entrantes de la alimentación principal para invertir el sentido de rotación de los motores.
- Verificar que la temperatura del agua a la entrada del intercambiador lado instalación corresponda aproximadamente con el valor del set point del termostato.
- Para las unidades con versión A (con bombas y depósito de inercia) si el motor de la bomba fuese ruidoso, cerrar lentamente la llave de impulsión hasta alcanzar las condiciones normales de funcionamiento. Este problema puede suceder cuando las pérdidas de carga sean completamente diferentes de la presión disponibile de la bomba.

5.1.4 Controles de la carga de refrigerante

- Después de algunas horas de funcionamiento, verificar que el visor del líquido de la parte central es de color verde: si este fuese amarillo, puede haber humedad en el circuito. En este caso es necesario efectuar la deshidratación del circuito (realizar sólo por personal cualificado). Controlar que no aparezcan burbujas de aire en el visor del líquido. En este caso es necesario volver a realizar la carga refrigerante. Es normal la presencia de alguna burbuja de vapor.
- Pocos minutos después del encendido de la unidad, trabajando en modo verano (refrigeración), controlar que la temperatura de condensación visualizada en el manómetro sea cerca de 15°C superior a la temperatura del aire exterior. Verificar que la temperatura de evaporación indicada en el manómetro, sea de 5°C inferior de la temperatura de salida del intercambiador del lado de la instalación; controlar que el sobrecalentamiento del refrigerante en el intercambiador del lado de la instalación esté comprendido entre 5°C y 7°C; controlar que el subenfriamiento del refrigerante en el intercambiador del lado de la fuente de energía esté comprendido entre 5°C y 7°C.

5.2 Descripción del control

5.2.1 Icono del display

El display del instrumento está dividido en tres zonas: **Zona de la izquierda:** El display muestra los iconos,

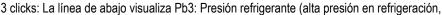
Zona arriba a la derecha: El display muestra la temperatura de aqua de la instalación de entrada.

Zona abajo a la derecha: El display muestra la temperatura de agua de la instalación en salida o, en la versión con control de condensación, la presión evaporación/condensación.

Icono	Significado	Icono	Significado
°C	Grados Celsius	- ** *	Activación resistencia eléctrica
bar	Bar	•	Bomba agua evaporador
'n	Compresor1	Flow!	Alarma flujostato
2	Compresor2	4	Ventilador condensador
\triangle	Alarma General		

5.2.2 Función de las teclas

M permite entrar en el menú de funciones



SET visualiza o modifica los set points. Selecciona un parámetro o confirma un valor en modalidad programación

En modalidad estándar permite visualizar las varias temperaturas.

1 click: La línea de abajo visualiza Pb1: Temperatura aqua entrada evaporador

2 clicks: La línea de abajo visualiza Pb2: Temperatura agua salida evaporador

baja presión en calefacción)

4 clicks: La línea de abajo visualiza Pb4: Temperatura batería aletada (no usada)

En modo programación permite deslizar los códigos de los parámetros o incrementar el valor

En modo estándar permite visualizar las diferentes temperaturas en modo inverso a la flecha de arriba. En modo programación permite deslizar los códigos de los parámetros o disminuye el valor.

Si presiona 5 segundos, hace posible encender o apagar la unidad en modo refrigeración. Cada vez que esta función se activa, el símbolo aparece en el display.

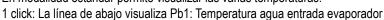
Si presiona 5 segundos, hace posible encender o apagar la unidad en modo calefacción. Cada vez que esta función se activa el símbolo aparece en el display

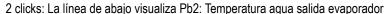
5.3 Panel control remoto

5.3.1 Icono del display

Icono	Significado	lcono	Significado
°C	Grados Celsius	- *** -	Activación resistencia eléctrica
bar	Bar	•	Bomba agua evaporador
'n	Compresor1	Flow!	Alarma flujostato
<u> 2</u>	Compresor2	f	Ventilador condensador
\triangle	Alarma General		

5.2.2 Función de las teclas

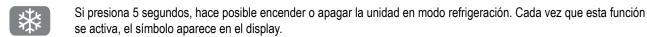


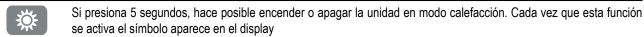

M permite entrar en el menú de funciones

SET visualiza o modifica los set points. Selecciona un parámetro o confirma un valor en modalidad programación

En modalidad estándar permite visualizar las varias temperaturas.

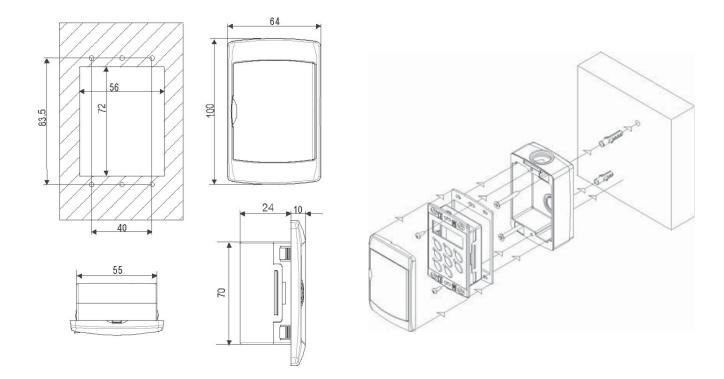
3 clicks: La línea de abajo visualiza Pb3: Presión refrigerante (alta presión en refrigeración,


baja presión en calefacción)


4 clicks: La línea de abajo visualiza Pb4: Temperatura batería aletada (no usada)

En modo programación permite deslizar los códigos de los parámetros o incrementar el valor

En modo estándar permite visualizar las diferentes temperaturas en modo inverso a la flecha de arriba. En modo programación permite deslizar los códigos de los parámetros o disminuye el valor.

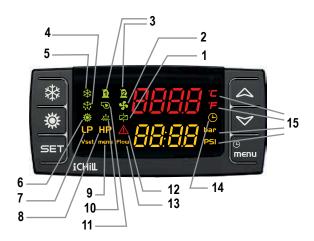


5.6.1 Instalación

El terminal remoto está montado en el panel, su medida 72x56 mm, está fijado con tornillos.

Para obtener una protección frontal IP65 utilizar la goma de protección frontal mod. RGW-V (opcional). Para la fijación a la pared está disponible un adaptador para tarjeta vertical V-KIT.

Para la conexión eléctrica al panel de control remoto referirse al esquema eléctrico suministrado con la unidad.


En caso de error del control / terminal remoto o de error en el cableado, la falta de comunicación entre el instrumento y el terminal remoto será indicado en el display con el mensaje de error "noL".

6. USO

6.1 Encendido y antes de la puesta en marcha

Para alimentar eléctricamente la unidad, girar el interruptor general en posición ON. El display muestra la temperatura agua entrada evaporador.

Legenda

1	Encendida si la salida del colector está abierta	9	Función menú activada.
2	Icono ON (encendido): si los ventiladores están encend	10	Resistencia integrada circuito evaporador activada.
3	Encendido si el compresor está en marcha; intermitente si el compresor está en temporización de encendido	11	Encendido si al menos una de las 2 bombas de agua (bomba agua condensador o bomba agua evaporador) está encendida
4	Icono intermitente: Tiempo de inicio de desescarche; Icono ON: Ciclo desescarche en curso.	12	Encendido intermitente en presencia de alarma
5	Icono ON (encendido): Unidad en modo refrigeración.	13	Encendido intermitente si la entrada digital del flujostato está activada (si la bomba On que no con bomba OFF)
6	Encendido intermitente en caso de alarma de baja presión Activado.	14	Encendido cuando el display inferior visualiza la hora corriente, la hora de funcionamiento de la carga, etc.
7	Encendido intermitente en caso de alarma de alta presión activada.	15	Encendido cuando el display muestra la temperatura o la presión.
8	Accese lampeggiante in caso di allarme Alta pressione attivo.		

6.1.1 Modo refrigeración

Para encender la unidad en modo refrigeración, presionar la tecla . El icono del copo de nieve está encendido. Si se necesita, inicia la cuenta del tiempo de retardo de encendido del compresor, y el icono del compresor parpadea. La bomba de agua se activará después de pocos segundos, y sucesivamente, una vez que el contenido del compreso se haya terminado, el compresor arranca y el icono permanece encendido. El display visualiza la temperatura de entrada del agua al evaporador.

6.1.2 Modalità riscaldamento

Para encender la unidad en modo refrigeración, presionar la tecla El icono del sol está encendido. Si se necesita, inicia la cuenta del tiempo de retardo de encendido del compresor, y el icono del compresor parpadea. La bomba de agua se activará después de pocos segundos, y sucesivamente, una vez que el contenido del compreso se haya terminado, el compresor arranca y el icono permanece encendido. El display visualiza la temperatura de entrada del agua al evaporador.

6.2 Apagado

6.2.1 Modo refrigeración

Para apagar la unidad en modo refrigeración, presionar la tecla 🗱 . El LED se apaga. La unidad se pondrá en modo stand by.

6.2.2 Modo calefacción

Para apagar la unidad en modo refrigeración, presionar la tecla . El LED se apaga. La unidad se pondrá en modo stand by.

6.3 Stand-by

Cuando la unidad está parada desde la botonera ó desde el panel remoto, la unidad se pone en modo stand-by. En esta modalidad el control microprocesador muestra los valores medidos (ej. temperatura agua) y es capaz de detectar los estados de las alarmas. Las únicas señales visibles en el display son el led verde del circuito 1 y las temperaturas del agua. Si la unidad está parada desde el ON/OFF aparece la palabra OFF.

Nunca apagar la unidad (para parada temporánea), apretando el interruptor principal: este dispositivo debe ser usado para desconectar la unidad de la alimentación eléctrica en ausencia del flujo de corriente, por ej. Cuando la unidad está en OFF... también, falta alimentación, la resistencia del carter no se alimenta, con el consiguiente peligro de rotura de los compresores en el encendido de la unidad.

6.4 Como modificar los set points

Cuando se modifica o varían los parámetros operativos de la máquina asegurarse de no crear situaciones de conflicto con los demás parámetros impuestos.

La visualización completa de los 2 set points (calefacción, refrigeración) es posible SÓLO cuando la unidad está en (calefacción, refrigeración) es posible SÓLO cuando la unidad está en modo stand-by. Se aconseja poner la unidad en stand-by para modificar los set points. Si la unidad no está en stand-by, los únicos parámetros editables serán aquellos relativos al modo operativo de la unidad. Ej. En modo calefacción es posible cambiar sólo los set points de la calefacción, y en modo refrigeración es posible cambiar sólo los parámetros correspondientes a la refrigeración.

Seleccionar el set point requerido pulsando la tecla SET Abajo en el display aparecerán los siguientes símbolos:

SEtC Set point Refrigeración **SEtH** Set point Calefacción

Para imponer el set point necesitado presione la tecla SET durante 3 segundos.

El valor corriente parpadeará en alto y puede ser modificado usando teclas para imponer el nuevo valor.

Puede presionar SET para memorizar el parámetro y salir.

seleccionar es 23°C.

Todos los set points se refieren a la temperatura de retorno del sistema. Por ejemplo, si es necesaria agua caliente a 45°C y el Δt es 5°C, entonces el set point debe ser puesto a 40°C. En el caso en que el Δt esté 8°C, entonces el set point debe ser puesto a 37°C. En el caso que se necesite el agua fría, por ejemplo a 15°C, y el ∆t está 5°C, entonces el set point que se debe seleccionar es 20°C. En caso en que el ∆t sea 8°C, el set point que se debe

6.4.1 Imposición de parámetros

Los set points variables que pueden ser modificados del evaporador final son:

Simbolo	Función	Limites admitidos	Valor de fábrica
SEt H	Set-point Refrigeración	20÷55°C	40°C
SEt C	SEt C Set-point Calefacción		12°C
SD02	SD02 Set-point condensazione		10°C
PAS	Password	(contactar servicio técnico)	

La unidad está provista de un sistema de control muy sofisticado con numerosos parámetros que no son modificables por el usuario final; estos parámetros están protegidos por una contraseña.

6.5 Lista parámetros

Pulsando la tecla el usuario tiene la posibilidad de visualizar numerosos parámetros.

Mover la lista de parámetros usando

puede pulsa la tecla SET para visualizar los parámetros necesitados.

En este menù únicamnete es posible visualizar los parámetros. No es posible modificar ningún valor. La lista de parámetros es:

Display	Lista	Símbolo	Significado
ALrM	Lista Alarmas	ALrM	Ver párrafo siguiente
ALOG	Histórico alarmas	ALOG	Ver párrafo siguiente
HouR	Hora funcionamiento componentes principa- les	C1HR C2HR PFHR PCHR	Hora funcionamiento compresor 1 Hora funcionamiento compresor 2 (solo modelos con 2 compresores) Hora funcionamiento bomba agua evaporador Hora funcionamiento bomba agua condensador
DEF	(No usado)	Conteo (en segundos) hasta el ciclo de desescar sivo; el contenido está activado si el led escarche está parpadeando. En el caso en que desescarche este apagado el ciclo de desescarch necesita. Durante el desescarche el led esta enc	

6.6 Silenciamiento señal acústica

Presionando y soltando una de las teclas, el "buzzer" se apaga, también si las condiciones de alarmas permanecen activadas.

6.7 Reset alarmas

(aparece el menú AlrM abajo a la derecha del display). Pulsa la tecla

para visualizar las alarmas activas.

En caso de alarmas simultáneas utilizar activadas. Que son dos tipos de alarmas:

para mover la lista de las alarmas

Alarmas reseteables:

El símbolo RST aparece en la parte superior del display. En este caso pulsar el botón set para resetear la alarma.

Alarmas no reseteables:

El símbolo no aparece en la parte superior del display. En este caso la alarma es permanente; contacte con asistencia técnica.

6.8 Visualización histórico alarmas

Pulsar la tecla

para mover el menú, cuando aparezca el símbolo ALOG en la parte inferior del

. Para mover la lista de alarmas usar

7. MANTENIMIENTO DE LA UNIDAD

7.1 Advertencias generales

El mantenimiento permite:

- Mantener eficientemente la máquina.
- Prevenir eventuales errores.
- Reducir la velocidad de deterioro de la máguina.

Se aconseja proveerse de un libro de instrucciones de la máquina con la finalidad de tener un seguimiento de las intervenciones efectuadas en la unidad facilitando las eventuales reparaciones de errores.

Las operaciones de mantenimiento deben ser seguidas conforme a todas las prescripciones de los párrafos anteriores

Utilizar dispositivos de protección individual previstos de las normativas vigentes en cuanto a las pruebas de tuberías de descarga del compresor que se encuentran a temperaturas elevadas y las aletas de la batería resultan cortantes

En el caso en que la unidad no se use durante el invierno, el agua contenida en las tuberías se puede congelar y dañar seriamente la máquina. En el caso en que la unidad no se use durante el invierno eliminar cuidadosamente el agua de las tuberías, controlando que todas las partes del circuito estén vaciadas y que se haya drenado cada sifón interno o externo de la unidad.

7.2 Acceso a la unidad

El acceso a la unidad una vez que esté instalada, debe ser permitido solamente a los operadores y técnicos habilitados. El propietario de la máquina es el representante legal de la sociedad, ente o persona física propietaria de la instalación en que está ubicada la máquina, y él es el responsable del cumplimiento de todas las normas de seguridad indicadas en el presente manual y de la normativa vigente. Cual sea la naturaleza del lugar de la instalación debe estar prohibido el paso a extraños, debe ser prevista una zona precintada entorno a la máquina de al menos 1,5 metros de distancia de la superficie exterior, dentro de la cual pueden trabajar sólo operarios y técnicos.

7.3 Controles periódicos

Las operaciones de puesta en marcha deben ser seguidas conforme a todas las prescripciones de los párrafos anteriores.

Todas las operaciones descritas en estos capítulos DEBEN SER SIEMPRE SEGUIDAS POR PERSONAL CULI-FICADO. Antes de efectuar cualquier intervención en la unidad o de encender las partes internas, asegúrese de haber desconectado la alimentación eléctrica. La cabeza y las tuberías de descarga del compresor se encuentran a temperaturas muy elevadas. Prestar particular atención cuando se opera cerca de la batería.

Las aletas de aluminio son particularmente cortantes y pueden provocar heridas graves. Después de las operaciones de mantenimiento cerrar los paneles fijándolos con tornillos de fijación.

7.3.1 Cada 6 meses

Es una buena norma seguir controles periódicos para verificar el correcto funcionamiento de la unidad. Controlar el correcto funcionamiento de los órganos de control y de seguridad.

- Controlar que los terminales eléctricos presentes dentro del cuadro eléctrico estén bien fijados.
- Limpiar periódicamente los contactos móviles y fijos de los interruptores.
- Controlar que no exista pérdida de agua en el circuito hidráulico.
- · Controlar que el flujostato funcione correctamente, limpiar el filtro metálico instalado en las tuberías de aqua.
- Controlar que la resistencia del carter esté alimentada y que funcione correctamente (mensualmente).
- Controlar el estado de la batería aletada, si es necesario limpiar con aire comprimido en dirección opuesta al flujo de aire. Si la batería estuviese completamente obstruida, limpiarla con aire comprimido teniendo cuidado de no dañar las aletas de aluminio.
- Controlar la fijación y el balanceo del ventilador.
- Controlar el color del indicador de humedad en el visor de líquido (verde=no humedad, amarillo= presencia de humedad): si el indicador está de color amarillo, cambiar el filtro refrigerante.

7.3.2 Fin estación o parada de la unidad:

Si prevé una parada de la unidad por un largo periodo, el circuito hidráulico debe ser vaciado, de modo que no haya agua en las tuberías y en el intercambiador. Esta operación es obligatoria si, durante la parada estacional, prevé que la temperatura ambiente descienda por debajo del punto de congelación de la mezcla utilizada (típica operación estacional).

7.4 Reparación circuito frigorífico

Se recuerda que en el caso en que fuese necesario vaciar el circuito frigorífico es obligatorio recuperar el refrigerante a través del equipo apropiado.

El sistema debe ser cargado con nitrógeno usando una bomba provista de válvula reductora hasta una presión de cerca de 15 bar. Eventuales pérdidas deben ser detectadas a través de un detector de fugas. La presencia de burbujas o espuma indican la presencia de fugas. En este caso vaciar el circuito antes de realizar la soldadura con las aleaciones adecuadas.

No usar nunca oxígeno en vez de nitrógeno: elevado riesgo de explosión.

Los circuitos frigoríficos funcionan con gas frigorífico necesitando particular atención en el montaje y en el mantenimiento, con el fin de preservarlos de anomalías de funcionamiento.

Por tanto es necesario:

- Evitar entrada de aceite diferente del especificado ya precargado en el compresor.
- Para máquinas que utilizan el refrigerante R410A, en el caso de que se haya producido una fuga de gas aunque sólo sea parcial, debe vaciar completamente el circuito frigorífico y realizar la carga completa de refrigerante con la cantidad indicada en la placa de características del equipo..
- En caso de sustitución de cualquier parte del circuito frigorífico, no dejar el circuito abierto más de 15 minutos.
- En caso de sustitución del compresor, completar la instalación dentro del tiempo arriba indicado, después de haber quitado las tapas de goma.
- En caso de sustitución del compresor se aconseja efectuar el lavado del circuito frigorífico con productos adecuados añadiendo además, durante un cierto período de tiempo, un filtro antiácido.
- En condiciones de vaciado no dar tensión al compresor; no comprimir el aire en el interior del compresor.

8. UNIDAD FUERA DE SERVICIO

8.1 Desconexión de la unidad

Todas las operaciones de fuera de servicio deben ser seguidas por el personal habilitado conforme a la legislación vigente en el país de destino.

- Evitar derrames o fugas al medio ambiente.
- Antes de desconectar la máquina recuperar si está presente:
 - · El gas refrigerante;
 - · Las soluciones anticongelantes del circuito hidráulico;
 - El aceite lubricante de los compresores.

Mientras se está a la espera de la limpieza y elminización, la máquina puede almacenarse incluso si está abierta, siempre y cuando el equipo tenga los circuitos eléctricos, frigoríficos e hidráulicos íntegros y cerrados.

8.2 Recuperación, eliminación y reciclaje

La estructura y los diferentes componentes, si están inutilizables, deberán ser desmontados y divididos según la naturaleza de sus materiales; particularmente el cobre y el aluminio presentes en cantidades discretas en la máquina.

Todos los materiales deben ser recuperados ó eliminados conforme a las normas nacionales vigentes en la materia.

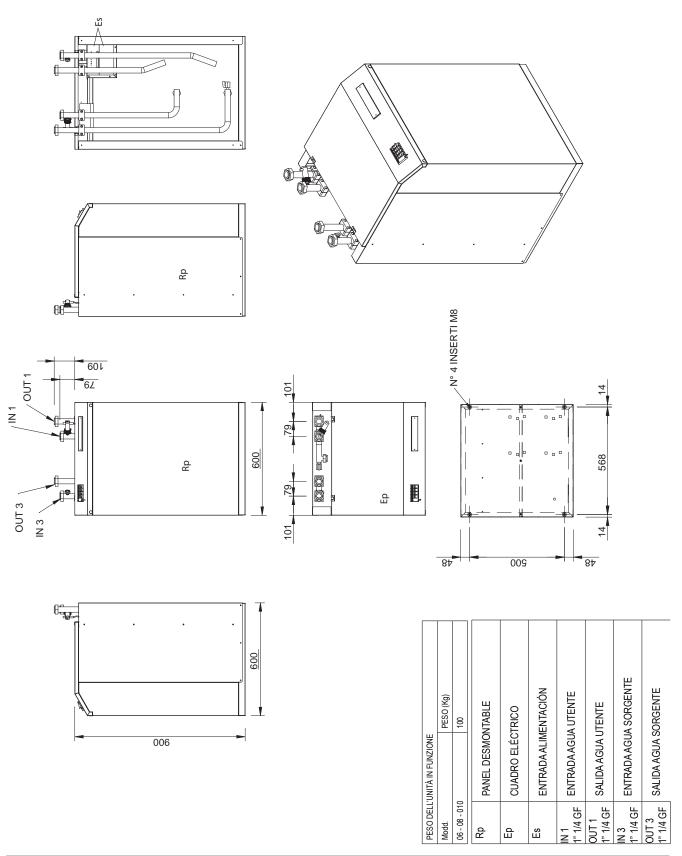
8.3 Directiva RAEE (sólo para UE)

- La directiva RAEE prevé que la eliminación y el reciclaje de los aparatos electrónicos sea obligatoriamente gestionada a través de una adecuada recogida en los centros oportunos, separada de la recogida para la basura urbana.
- El usuario tiene la obligación de no eliminar el equipo, cuando llegue el fin de la vida útil del mismo, como basura urbana, sino que debe llevarlo hasta un punto de recogida autorizado específico para este tipo de aparatos.
- · Las unidades que están dentro de la directiva RAEE están indicadas con el símbolo arriba indicado.
- •.Los efectos potenciales sobre el ambiente y sobre la salud humana están indicados en este manual.
- Puede solicitar más información al fabricante si fuese necesario.

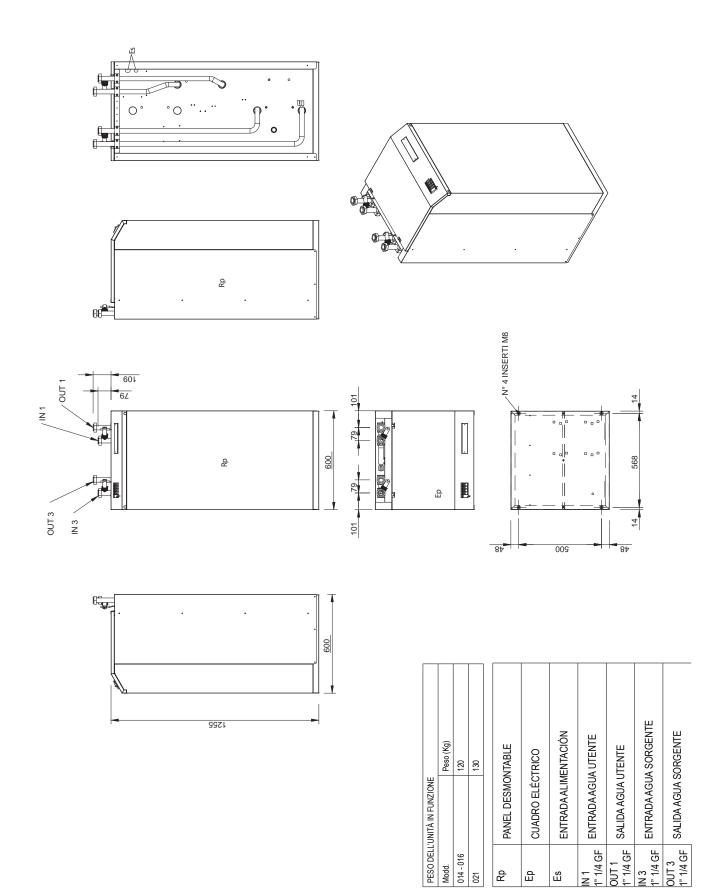
9. DIAGNÓSTICO Y RESOLUCIÓN DE PROBLEMAS

9.1 Indicación de errores

Todas las unidades son verificadas y probadas en fábrica antes de realizar la expedición al destanatario, pero es posible que aparezca durante el funcionamiento cualquier anomalía ó error.


SE RECOMIENDA RESETEAR UNA ALARMA DE INDENTIFICACIÓN SÓLO DESPUES DE HABER AVERI-GUADO LA CAUSA QUE LA HA GENERADO; RESETOS REPETIDOS PUEDEN CAUSAR DAÑOS IRREVER-SIBLES A LA UNIDAD.

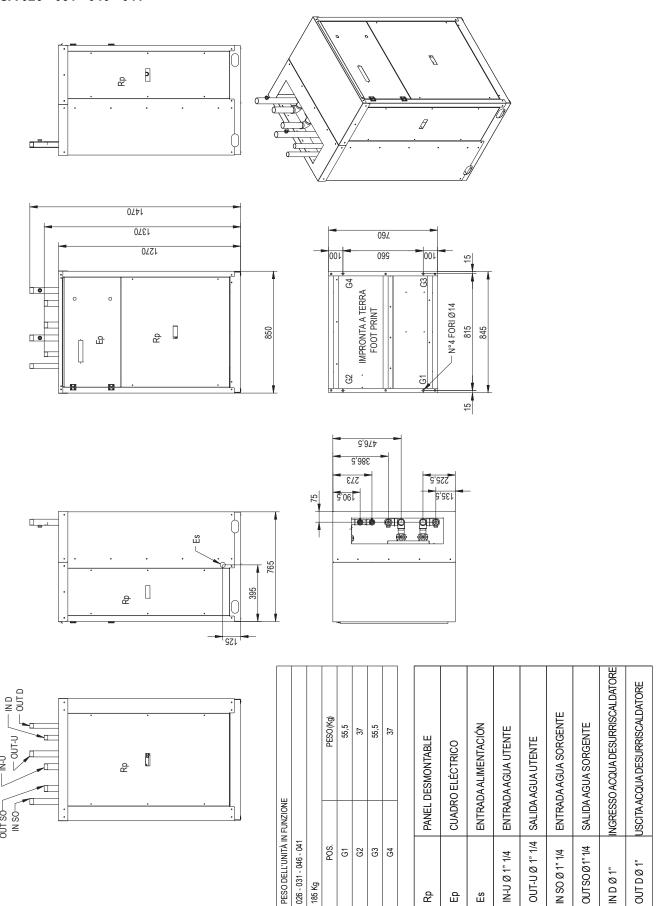
Problema	Síntoma	Causa	Remedio	
P1	Alarma de sonda PB1			
P2	Alarma de sonda PB2	Error conexiones eléctricas	Controlar las conexiones eléctricas de la sonda en el regletero,	
P3	Alarma de sonda PB3	Sonda defectuosa.	Si están correctas contactar con la asistencia técnica para sustituir la sonda.	
P4	Alarma de sonda PB4			
A01	Alarma presostato de massima	En modalidad calefacción: Caudal de agua insuficiente circuito agua lado instalación. En modo refrigeración: Caudal de aire insuficiente en el ventilador lado fuente.	Volver a seleccionar el caudal correcto de agua del lado instalación. Volver a seleccionar el correcto caudal de aire del ventilador lado fuente.	
A02	Alarma presostato de mínima	Pérdida de carga de refrigerante.	Localizar la fuga y repararla.	
A05	Alta presión	Transductor defectuoso.	Sustituir el transductor defectuoso.	
A06	Alarme baja presión	Pérdida de carga de refrigerante.	Localizar la fuga y repararla.	
A07	Alarma antihielo de activación de Entrada analógica	Temperatura agua demasiado baja.	Controlar el set point temperatura de la instalación. Controlar caudal agua instalación.	
A08	Alarma de flujostato evaporador (unidad/agua agua/agua)	Presencia de aire ó suciedad en la instalación hidráulica del lado de la instalación.	Vaciar lentamente la instalación hidráulica del lado de la instalación ó controlar y limpiar el filtro de agua	
A09	Alarma térmica compresor 1	Corriente absorbida	Sustituir el compresor	
A10	Alarma térmica compresor 2	Fuera de los límites operativos.		
A11	Alarma térmica ventilador de condensación	Corriente absorbida fuera de los límites operativos.	Controlar el correcto funcionamiento del ventilador de condensación y si fuese necesario sustituirlo.	
A12	Alarma error en desescarche	Tiempo de desescarche demasiado elevado. Temperatura externa fuera de los límites operativos. Pérdida de carga de refrigerante.	Controlar el set point del desescarche. Volver a las condiciones normales de trabajo. Localizar la fuga y repararla.	
EE	Alarma error EEPROM	Graves daños en el hardware del sistema de control del microprocesador.	Apagar la unidad y después de pocos segundos volver a encenderla, si la alarma continúa contactar con la asistencia.	



10.DISEÑO DIMENSIONAL WSA 06 - 08 - 010

WSA 014 -016 - 021

&

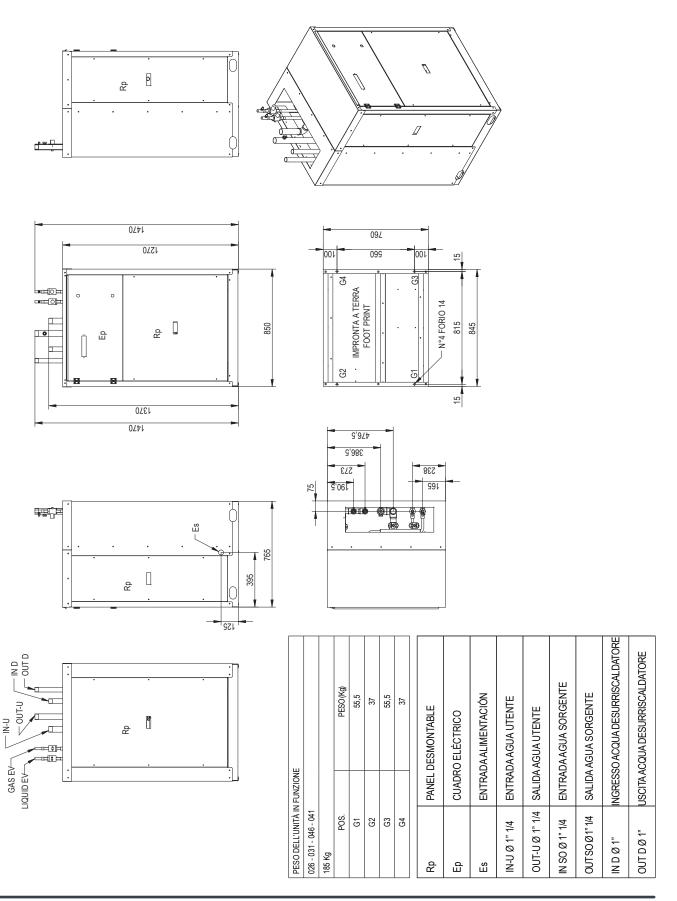

021

В

Es

WSA 026 - 031 - 046 - 041

Es


Б

格

185 Kg

WSA/EV 026 - 031 - 046 - 041

HIDROS Spa

Sede legale: Via della Croce Rossa, 32/2 • cap 35129 • Padova Italy Sede operativa: Via E. Mattei, 20 • Cap 35028 Piove di Sacco (PD) Italy Tel. +39 049 9731022 • Fax +39 049 5806928 Info@hidros.it • www.hidros.it

P.IVA e C.F 03598340283 ■ R.E.A. PD-322111
REG. IMP. PD 0359834 028 3 ■ VAT NUMBER: IT 03598340283 ■ CAPITALE SOCIALE € 1.200.000,00 i.v.

I dati tecnici riportati in questo manuale non sono vincolanti.
HIDROS S.p.A. si riserva il diritto di apportare in qualunque momento le modifiche necessarie per il miglioramento del prodotto