
GHE

VMC Double flux avec déshumificateur d'air, rafraîchissement en été et maintien de température en hiver

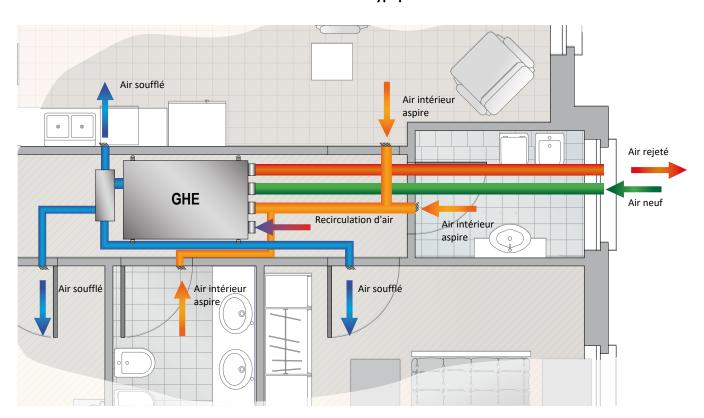
Les déshumidificateurs à récupération de chaleur à très haute efficacité des séries FHE et GHE ont été conçus pour assurer la déshumidification et le renouvellement d'air dans des environnements résidentiels à très haute efficacité énergétique, en combinaison avec des systèmes de refroidissement radiant.

Les unités ont été conçues pour assurer la déshumidification de l'air dans des conditions d'utilisation thermiquement neutres, aussi bien dans des conditions d'air refroidi, en gérant de très faibles débits d'air et en évitant les courants d'air gênants typiques des systèmes de climatisation traditionnels.

Les unités se composent d'un circuit frigorifique à détente directe combiné à un récupérateur de chaleur à flux croisé extrêmement efficace, conçu pour assurer la récupération de chaleur et l'échange d'air ambiant conformément aux réglementations régionales et nationales.

Version

FC Free Cooling: Permet à l'air d'entrer pour éviter que le circuit frigorifique se mette en marche de façon intempestive. Cela permet d'obtenir d'excellentes conditions environnementales avec une économie d'énergie. L'option Free Cooling est parfaite dans les saisons intermédiaires, lorsque le chauffage ou le refroidissement ne sont pas en cours d'utilisation.


GHE		26	51
Capacité de déshumidification (du contenu net hygroscopique de l'air extérieur) (1)	l/24h	30.1	61,8
Puissance totale de refroidissement (latente+ sensible) (1)	., <u>_</u>	1380	2820
Puissance de chauffage récupérée en hiver (2)	W	950	1850
Efficacité d'échange en hiver (2)	%	90	90
Efficacité d'échange en été (1)	%	75	72
Alimentation électrique	V/Ph/Hz	230/1/50	230/1/50
Puissance absorbée par le compresseur (1)	W	340	480
Ventilateur de soufflage: minimum÷nominal÷maximum	W	10 ÷ 30 ÷ 86	30 ÷ 60 ÷ 130
Ventilateur d'aspiration: minimum÷nominal÷maximum	W	11 ÷ 22 ÷ 43	22 ÷ 44 ÷ 68
Pertes de charges disponibles soufflage: nominal÷maximum	Pa	50 ÷ 140	50 ÷ 140
Pertes de charges disponibles aspiration: nominal÷maximum	Pa	50 ÷ 140	50 ÷ 140
Débit d'eau batterie eau chaude: minimum÷nominal÷maximum	l/h	150 ÷ 250 ÷ 400	200 ÷ 350 ÷ 600
Pertes de charges nominal	kPa	15	35
Débit air extérieur	m³/h	80 ÷ 130	140 ÷ 250
Débit d'air soufflage	m³/h	130 ÷ 260	250 ÷ 500
Réfrigérant		R134a	R410A
Potentiel réchauffement global (GWP)		1430	2088
Charge fréon	kg	0,64	1,10
Tonnes équivalent CO ₂	t	0,92	2,30
Puissance sonore (3)	dB(A)	47	52
Pression sonore (4)	dB(A)	39	44

Les performances correspondent aux conditions suivantes: (1)Air ambiant. 26°C; 65% RU; air extérieur 35°C; 50% RU; Débit air neuf 130 m³/h(GHE26),250 m³/h(GHE51); température eau entrée 15°C, débit d'eau 250 l/h(GHE26), 350l/h(GHE51). (2)Air extérieur -5°C; 80% RU; air ambiant 20°C; air neuf au maximum.

(3)Puissance sonore: selon ISO 9614

(4)Pression sonore mesurée à 1 m de l'unité en champ libre selon conditons conformes à ISO 9614, en fonctionnement normal.

Installation typique

Châssis

Toutes les unités de la série sont fabriquées en tôle galvanisée à chaud pour assurer la meilleure résistance à la corrosion. Le châssis est autoportant avec des panneaux amovibles pour faciliter l'inspection et l'entretien des composants internes. Le bac de récupération des condensats est fourni de série sur tous les appareils et est fabriqué en acier peint.

Circuit frigorifique

Le circuit frigorifique est réalisé à partir de composants d'entreprises internationales de premier plan et conformément à la norme ISO 97/23 en matière de soudo-brasage. Le gaz réfrigérant utilisé est R134a pour le modèle 26, R410A pour le modèle 51.

Compresseur

Le compresseur est de type alternatif pour le modèle 26, de type rotatif pour le modèle 51 avec relais de protection thermique intégré dans les enroulements électriques. Le compresseur est monté sur des supports antivibratiles spécifiques en caoutchouc pour réduire le bruit.

Condenseur et évaporateur

Les batteries de condensation et d'évaporation sont réalisées en tubes de cuivre et ailettes en aluminium. Les tubes en cuivre ont un diamètre de 3/8", l'épaisseur des ailettes en aluminium est de 0,1 mm. Les tubes sont filés mécaniquement dans les ailettes en aluminium pour augmenter le facteur de transfert thermique. La géométrie de ces échangeurs de chaleur permet une faible valeur de pertes de charge côté air et donc la possibilité d'utiliser des ventilateurs à faible vitesse (avec par conséquence une réduction du bruit de la machine). Toutes les unités sont équipées de bacs à condensat en acier inoxydable à la base des échangeurs. Chaque évaporateur est également fourni avec une sonde de température utilisée comme sonde de dégivrage automatique.

Ventilateurs

Le ventilateur de soufflage de l'unité est de type centrifuge, à double aspiration avec pales vers l'avant, avec moteur EC directement couplé. Le ventilateur d'éjection est de type plug-fan avec des pales courbées vers l'arrière, avec moteur EC directement couplé.

Filtre à air

Fourni de série avec l'appareil, il est construit en matière filtrante synthétique et amovible pour la disposition différenciée, ePM10 50% selon la UNI EN ISO 16890:2017.

Echangeur air

Récupérateur hexagonal à flux croisés avec plaques en PVC, très haute efficacité (90%).

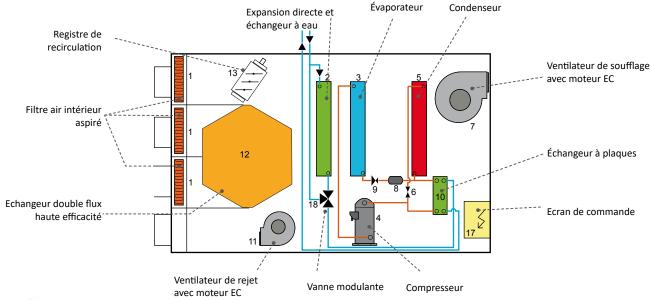
Minirupteur de reglage

Utilisé pour le calibrage des débits d'air des ventilateurs en fonction des pertes de charge des conduits.

Microprocesseur

Les unités sont équipées d'un microprocesseur avec logiciel avancé pour le contrôle du cycle frigorifique et la gestion de la partie hydronique et aéraulique.

Le logiciel prévoit :


- Gestion de l'exploitation à l'aide d'une sonde de température et d'humidité ambiante.
- Activation de la déshumidification en fonction de la consigne d'humidité.
- Activation de l'intégration de la charge hivernale ou estivale sensible en fonction de la température de consigne d'été ou d'hiver.
- Gestion de la température de l'air introduit dans la pièce par moyen d'une sonde de limite en soufflage (fournie par défaut).
- Gestion de la vanne modulante pour l'alimentation correcte de la batterie à eau.
- Gestion de la ventilation directement depuis la minuterie intégrée au microprocesseur (en option).
- Gestion des clapets de calibrage .
- Affichage des alarmes machine.
- Supervision par port série RS 485 (en option) et/ou module XWEB (en option).
- Gestion des filtres sales (optionnel).
- Gestion de l'antigel.
- Commutation été/hiver.

Versions

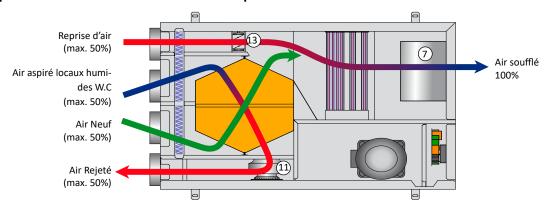
Free Cooling (FC)

Dans ces versions, la commande électronique montée sur la machine, va vérifier les conditions thermo-hygrométrique (porte exterieure intérieure), en permettant à l'air de ciculer pour éviter la mise en route inutile du circuit de réfrigération, en assurant ainsi d'excellentes conditions environnementales avec des économies d'énergie élevée. L'option Free Cooling est parfait au printemps et en automne, lorsque le chauffage ou le refroidissement n'est pas encore activé, ou la nuit, lorsque les conditions d'humidité de la chaleur de l'été à l'extérieur sont souvent suffisantes pour assurer une bonne ventilation des locaux sans l'utilisation du système de réfrigérant.

Principe de fonctionnement du circuit hydraulique

Le fonctionnement du déshumidificateur modèle GHE est comme suit: l'air des pièces humides est aspiré par la prise nr (7), passe par le filtre (1) l'échangeur double flux (12) la batterie de pré-refroidissement eau froide (2), où il est refroidi et porté à saturation. Ensuite l'air passe par l'évaporateur (3) où il est refroidi et déshumidifié. L'air passe par le condenseur (5) où il est post réchauffé (avec un taux d'humidité constant) et refroidi, lorsque la vanne solénoïde (6) ouvre quand les conditions requises sont réalisées.

Déshumidification avec air neutre:

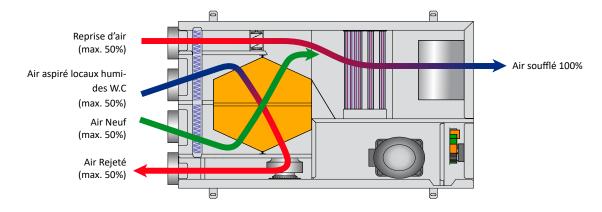

Le système de refroidissement fonctionne partiellement dans l'eau par l'intermédiaire du condenseur (10) et partiellement dans l'air

avec l'échangeur de chaleur (5) qui fera ensuite un post-réchauffement à air à humidité constante et souffle l'air dans les locaux dans des conditions thermiquement neutres.

Déshumidification avec refroidissement:

Le circuit de refroidissement, dans ce cas, fonctionne à 100 % de la condensation dans l'échangeur de chaleur à eau (10), l'échangeur de chaleur (5) est intercepté par la vanne (6) et l'air soufflé est le même que celui passant par l'évaporateur (3), froid et sec.

Principe de fonctionnement du circuit aeraulique:

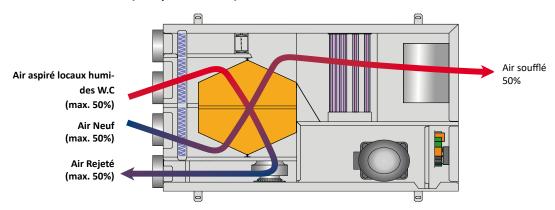

Les unités GHE 26 peuvent fonctionner avec un débit d'air extérieur de 80 à 130 m³/h (de 140 à 260 m³/h pour les modèles GHE 51), pour assurer une quantité d'air neuf suffisant pour un volume variable de 260 m3 (0.5 vol/h) à 460 m³ (0.3 vol/h), en conformité aux règlements nationaux et régionaux. Le débit d'air peut varier de 80 à 130 m³/h (140-260 m³/h pour les modèles 51) en mode hiver, et est fixé à 260 m³/h (500 m³/h pour les modèles 51) en mode été.

L'échangeur de chaleur double flux croisé de haute efficacité est

conçu pour assurer une côté de récupération de 90% avec un air extérieur à -5°C et une température ambiante de 20°C. L'air vicié est expulsé de l'environnement par le ventilateur (11), alors que l'air extérieur est aspiré par le ventilateur (7).

L'équilibre du flux d'air est assurée par le (13) qui gère l'équilibre des flux d'air et la recirculation en été.

Mode été (compresseur on)

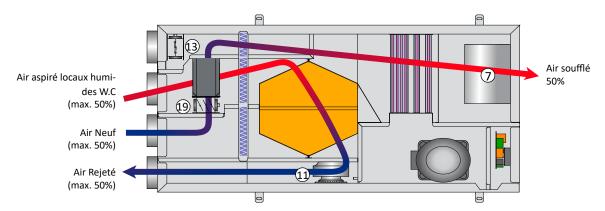


Avec le mode sélectionné, l'unité renouvelle l'air ambiant avec l'extérieur par l'intermédiaire de l'échangeur de chaleur à haut rendement, le débit d'air est augmenté afin de permettre le fonctionnement du circuit réfrigérant; à cette fin la reprise d'air sera ouverte, le ventilateur fonctionne à capacité maximale et l'unité fonctionne avec l'air extérieur et la recirculation partielle.

Les fonctions possibles dans cette configuration sont:

- Renouvellement + déshumidification neutre: L'unité de condensation partielle sur l'air et partielle sur l'eau permet d'obtenir un air sec et thermiquement neutre.
- Renouvellement + Déshumidification avec refroidissement: l'unité travaille à 100% de condensation sur l'eau et on obtient un air sec et refroidi.

Mode hiver et inter-saison (compresseur off)


Avec ce mode sélectionné, l'unité renouvelle l'air ambiant avec l'extérieur par l'intermédiaire de l'échangeur de chaleur de haute efficacité.

Le débit d'air est réduit à la valeur requise par la norme (0.3 \div 0.5 vol / h), la prise d'air en vrac est volet fermé et l'unité fonctionne à 100 % d'air frais.

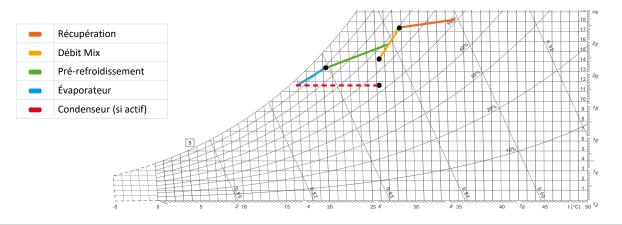
Les fonctions possibles dans cette configuration sont:

- Renouvellement de l'air chauffé: Le compresseur est éteint, la batterie peut être alimentée avec l'eau chaude du système de chauffage (grâce à la grande efficacité de l'échangeur de chaleur, le système est en mesure d'obtenir une température de l'air de 17 ° C, sans utiliser de l'eau chaude et pour une température extérieur de -5 °C) et se comporte comme un système normal avec récupération sur l'air.

Air neuf avec free cooling (Seulement version FC)

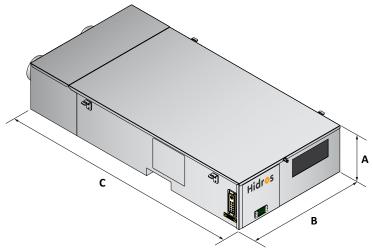
Le compresseur est éteint, la circulateur est hors tension (vanne 3 voies fermée), l'amortisseur de recirculation (13) est fermé, l'amortisseur de by-pass du récupérateur (19) est ouvert.

L'air vicié est entièrement évacué dans l'environnement par le ventilateur (11). Pendant ce temps l'air du côté extérieur est aspiré par le ventilateur (7) il contourne le récupérateur de chaleur et arrive à


la salle à la température et humidité relatives atteintes sans aucune modification. Pendant le mode de refroidissement libre le débit d'air en dehors de débit est égale à la vitesse d'écoulement de l'air d'alimentation dans l'environnement.

GHE		26	51
Microprocesseur contrôle		•	•
Débitmètre		•	•
Vanne modulante 3 voies		•	•
Ventilateur air neuf et air aspiré – moteur EC		•	•
Filtre d'air G4		•	•
Potentiomètres réglables		•	•
Récupération d'énergie haute efficacité		•	•
Clavier déporté	PCRL	0	0
Hygrostat thermique et mécanique déporté	HYGR	0	0
Sonde de température et d'humidité électronique	RGDD	0	0
Carte d'interface sérielle RS485	INSE	0	0
Filtre air électronique à haute efficacité	FC	0	0

• Standard, O Optional, – Non disponible.


Traitement d'air en été

C B Hidros B

Version avec free cooling

Mod.	A (mm)	B (mm)	C (mm)	kg
26	260	732	1105	60
51	400	835	1370	80
26/FC	260	732	1355	95
51/FC	400	835	1645	115