

POMPES À CHALEUR HAUTE PERFORMANCE AIR/EAU **SERIE**

LHi P2U/P2S/P4U/P4S

DOCUMENTATION TECHNIQUE

Ce manuel d'instructions comprend les documents suivants:

- · Déclaration de conformité
- · Manuel technique

Instructions composées: Consulter la section spécifique

Lire et comprendre toutes les instructions avant d'utiliser la machine.

Il est interdit la reproduction, stockage ou transmission, même partielle, de cette publication, sous toute forme sans l'autorisation écrite de le fabriquant.

Le fabriquant peut être contacte pour fournir toute information concernant l'utilisation de ses produits. Le fabriquant met en oeuvre une politique d'amelioration continue et de developpement de ses produits et se reserve le droit d'apporter des modifications a l'equipement et aux instructions concernant l'utilisation et la maintenance, a tout moment et sans preavis.

Déclaration de conformité

Nous declarons sous notre responsabilite que les mateiaux fournis se conforment totalement aux directives CEE et EN en vigueur. La declaration de conformite est jointe a la documentation technique fournie avec l'appareil. L'unité est chargée en gaz fluorés à effet serre.

INDEX

1. INTRODUCTION	5
1.1 Informations préliminaires	
1.2 But et contenu de ce manuel	
1.3 Où conserver ce manuel	
1.4 Mise-à-jour des instructions	
1.5 Comment utiliser ces instructions	
1.6 Risques résiduels	
1.7 Directives générales de sécurité	
1.8 Symboles de sécurité	
1.9 Limites d'utilisation et usages interdits	
1.10 Identification de l'unite	
2. SÉCURITÉ	
2.1 Avertissements sur substances toxiques potentiellement dangereuses	
2.2 Manipulation	
2.3 Éviter l'inhalation de concentrations élevées de vapeur	
2.4 Procédures en cas de fuite accidentelle de réfrigérant	
2.5 Informations toxicologiques sur le type de fluide frigorigène utilisé	
2.6 Premiers secours	
3. CARACTÉRISTIQUES TECHNIQUES	
3.1 Description de l'appareil	
3.2 Versions	
3.3 Accessoires	
3.4 Données techniques	
3.5 Limites de fonctionnement	
3.6 Production eau chaude sanitaire	
3.7 Niveaux de capacité du compresseur	
3.8 Facteurs de correction	
3.9 Niveaux sonores	
4. INSTALLATION	
4.1 Avertissements généraux et utilisation de symboles	30
4.2 Sécurité et santé du personnel	
4.3 Equipement de protection individuelle	30
4.4 Réception et contrôle du matériel	30
4.5 Stockage	31
4.6 Déballage	31
4.7 Levage et manutention	31
4.8 Positionnement et espaces minimum	31
4.9 Installation des pieds caoutchouc anti vibratiles (KAVG)	32
4.10 Carte d'interface RS485 (INSE)	34
4.11 Installation du bac à condensats (BRCA)	34
4.12 Connexions hydrauliques	
4.13 Caractéristiques chimiques de l'eau	
4.14 Composants hydrauliques	
4.15 Contenu d'eau minimum circuit utilisateur	
4.16 Contenu d'eau minimum circuit ECS	
4.17 Remplissage circuit hydraulique	
4.18 Vidange du circuit hydraulique	
4.19 Installations type	
4.20 Raccordements Electriques: informations préliminaires sur la sécurité	
4.21 Données électriques.	
4.22 Raccordements électriques	
4.23 Positionnement de la sonde de reprise circuit utilisateur (BTI)	
4.24 Positionnement sonde circuit ECS (BTS)	
4.25 Schémas frigorifiques de principe	
5. ACTIVATION DE L'UNITÉ	
V. AVTIVATION DE L'UNITE	55

5.1 Contrôles préliminaires	55
5.2 Positionnement du contrôle	
5.3 Description du contrôle	57
5.4 Liaison clavier déporté	59
6. UTILISATION	60
6.1 Mise en marche et démarrage initial	60
6.2 Mise à l'arrêt	
6.3 Comment changer les points de consignes	62
6.4 Touche PROBES	63
6.5 Touche ALARM	63
6.6 Touche CIRC	64
6.7 Touche SERVICE	
6.8 Silencier l'alarme acoustique	
6.9 Gestion de l'inverter	
7. MAINTENANCE DE L'UNITÉ	
7.1 Remarques générales	
7.2 Accès à l'unité	 78
7.3 Maintenance programmée	 79
7.4 Contrôles périodiques	
7.5 Réparation de circuit réfrigérant	
8. MISE A L'ARRET DÉFINITIF DE L'APPAREIL	
8.1 Mise hors circuit	
8.2 Élimination, récupération et recyclage	
8.3 Directive RAEE (UE uniquement)	
9. RÉSOLUTION DES DISFONCTIONNEMENTS	
9.1 Dépannage	

1. INTRODUCTION

1.1 Informations préliminaires

Il est interdit la reproduction, stockage ou transmission, même partielle, de cette publication, sous toute forme sans l'autorisation écrite de le fabriquant.

La machine, à laquelle ces instructions se référent, a été conçue pour les utilisations qui seront présentés dans les sections appropriées, conformément à ses caractéristiques de performance. Exclusion de toute responsabilité contractuelle et non, pour les dommages aux personnes, animaux ou choses, due à une mauvaise installation, réglage et entretien ou à une mauvaise utilisation. Toutes les utilisations non expressément mentionnées dans ce manuel ne sont pas autorisées.

Cette documentation est un support d'information et n'est pas considérée comme un contrat. Le fabriquant met en oeuvre une politique d'amélioration continue et de développement de ses produits et se réserve le droit d'apporter des modifications à l'équipement et aux instructions concernant l'utilisation et la maintenance, à tout moment et sans préavis.

1.2 But et contenu de ce manuel

Ce manuel fournit les informations de base pour l'installation, l'utilisation et la maintenance de l'appareil. Elles ont été rédigées en conformité aux dispositions législatives de l'Union Européenne et aux normatives techniques en vigueur à la date d'émission du manuel. Les instructions incluent les indications nécessaires à éviter des utilisations incorrectes raisonnablement prévisibles.

1.3 Où conserver ce manuel

Les instructions doivent être conservées en lieu sûr, à l'abri de poudre, humidité et facilement accessibles aux utilisateurs et manutentionnaires. Les instructions doivent toujours accompagner l'appareil et pour cela doivent être cédées à chaque éventuel utilisateur successif.

1.4 Mise-à-jour des instructions

Nous conseillons de vérifier que les instructions soient mises à jour à la dernière version disponible. Toutes les mises à jour envoyées au client doivent être conservées dans l'annexe de ce manuel. Le Fabricant est disponible pour fournir tout information concernant l'utilisation de ses produits.

1.5 Comment utiliser ces instructions

Les utilisateurs ou les opérateurs doivent nécessairement se référer aux instructions avant toute intervention sur la machine et en chaque occasion d'incertitude concernant le transport, le déplacement, l'installation, l'entretien, l'utilisation et le démontage de la machine.

Dans ce manuel, on a utilisé des symboles graphiques, pour attirer l'attention des opérateurs et des utilisateurs sur les activités à mener en toute sécurité, ces symboles sont indiquées dans les paragraphes suivants.

1.6 Risques résiduels

La machine a été conçue de façon à minimiser les risques pour la sécurité des personnes qui vont interagir avec elle. Pendant l'étude du projet, il n'à été pas techniquement possible d'éliminer complètement les causes de risque. Par conséquent, il est absolument nécessaire de faire référence aux prescriptions et les symboles ci-dessous.

de faire reference aux pres	criptions et les symbole	5 CI-UESSOUS.	
PIÈCES CONSIDERES (si présents)	RISQUE RÉSI- DUEL	MODE	PRÉCAUTIONS
échangeurs de cha- leur	petites coupures	Contact	éviter le contact, utiliser des gants de protection.
ventilateurs et grilles de ventilation	Blessures	insertion d'objets pointus à tra- vers les grilles, tandis que les ventilateurs sont en marche	Ne poussez jamais d'objets d'aucune sorte dans les grilles des ventilateurs.
Intérieure de l'unité: compresseurs et tuyaux du gaz	Brûlures	Contact	éviter le contact, utiliser des gants de protection.
câbles électriques et pièces métalliques	Electrocution, graves brûlures	défaut d'isolement des câbles d'alimentation, pièces métal- liques sous tension.	protection adéquate des lignes électriques; soin extrême dans la réalisation de la mise à terre des parties métalliques.
extérieure de l'unité: zone entourant l'unité	empoisonnement, graves brûlures	incendie dû à un court-circuit ou une surchauffe de la ligne d'alimentation du panneau électrique de l'unité.	section des câbles et système de protection de la ligne d'alimentation conformément au réglementation en vigueur
Vanne de sécurité de basse pression	empoisonnement, graves brûlures	pression d'évaporation élevée pour l'utilisation incorrecte de la machine lors des opérations de maintenance.	vérifier soigneusement la valeur de la pression d'évaporation pendant les opérations de maintenance. Utiliser tous les équipements de protection individuelle exigés par la loi. Les appareils doivent également protéger contre d'éventuelles fuites de gaz au niveau de la soupape de sécurité. Le déchargement de ces vannes est orienté de manière à éviter qu'elles ne causent des dommages aux personnes ou aux biens.
Vanne de sécurité de haute pression	empoisonnement, graves brûlures, perte auditive	Intervention de la vanne de sé- curité de haute pression avec le compartiment du circuit de réfrigération ouvert	éviter autant que possible l'ouverture du com- partiment du circuit de réfrigération; vérifier soi- gneusement la pression de condensation ; utiliser tous les équipements de protection individuelle prévus par la loi. Les appareils doivent égale- ment protéger contre d'éventuelles fuites de gaz au niveau de la soupape de sécurité. Le déchar- gement de ces vannes est orienté de manière à éviter qu'elles ne causent des dommages aux personnes ou aux biens.
Unité	Incendie externe	Incendie causé par calami- tés naturelles ou combustion d'élements à proximité de l'unité	Prévoir les dipositifs nécessaires contre l'incendie
Unité	Explosion, lésions, brulures, intoxica- tions, foudroiement pour calamité naturelles ou trem- blement de terre.	Casse, affaissement pour calamité naturelle ou tremblement de terre.	Prévoir les nécessaires précautions de nature électrique (disjoncteur et protections des lignes d'alimentation électriques adéquats ; soin maximal dans la liaison à la terre des parties métalliques), et mécanique (ancrages ou plots anti-vibratiles antisismiques pour éviter cassures ou chutes accidentelles).

1.7 Directives générales de sécurité

Symboles de sécurité en conformité à la normative ISO 3864-2:

INTERDICTION

Indique les opérations interdites.

DANGER

Indique les opérations qui peuvent être dangereuses et/ou interrompre le fonctionnement du matériel.

ACTION OBLIGATOIRE

Indique une information importante que l'utilisateur doit suivre pour garantir le bon fonctionnement du matériel en toute sécurité.

Symboles de sécurité en conformité à la norme ISO 3864-2:

Le symbole graphique d'avertissement est complété par des informations de sécurité (texte ou autres symboles).

1.8 Symboles de sécurité

DANGER QUELCONQUE

Observer soigneusement toute les indications. Le non respect des consignes peut causer des situation de danger avec consequents blessures des operateurs et utilisateurs.

RISQUE D'ÉLECTROCUTION

Observer soigneusement les instructions à côté du pictogramme.

Ce symbole indique des composants de l'unité ou, dans ce manuel, des actions qui pourraient causer des risques de nature électrique.

PIÈCES EN MOUVEMENT

Ce symbole indique les composants en mouvement de l'unité qui pourraient causer des risques.

SURFACES CHAUDES

Le symbole indique les composants de la machine avec température de surface élevée qui pourraient causer des risques.

SURFACES TRANCHANTES

Le symbole indique les composants ou les pièces de la machine qui peuvent provoquer des coupures au contact.

MISE À TERRE

Le symbole identifie le point de la machine pour la mise à terre.

LIRE ET COMPRENDRE LES INSTRUCTIONS

Lire et comprendre les instructions de la machine avant d'effectuer toute opération.

MATERIEL A RECYCLER

1.9 Limites d'utilisation et usages interdits

La machine a été conçue et construite exclusivement pour les usages décrits dans la section «Restrictions d'utilisation" du manuel technique. Toute autre utilisation est interdite, car elle peut causer des risques pour la santé des opérateurs et des utilisateurs.

L'unité n'est cependant pas adapte pour opérer dans les environnements:

- En présence d'atmosphères explosives ou très poussiéreuse;
- En présence de vibrations vibrations;
- En présence de champs électromagnétiques;
- En présence d'atmosphères agressives.

1.10 Identification de l'unité

Chaque unité dispose d'une plaque signalétique indiquant les informations principales de la machine.

Les données de la plaquette peuvent différer de celles présentés dans le manuel technique, puisque dans ce dernier il y a les données de l'unité standard sans accessoires.

Pour les informations électriques pas présentes sur la plaquette se référer au schéma électrique.

Une reproduction de la plaquette est représentée ci-dessous.

La plaquette ne doit jamais être retirée l'appareil.

2. SÉCURITÉ

2.1 Avertissements sur substances toxiques potentiellement dangereuses R410A

2.1.1 Identification du type de fluide intervenant: R410A

- Difluorométhane (HFC-32) 50% en poids CAS No.: 000075-10-5
- Pentafluoroéthane (HFC-125) 50% N ° CAS: 000354-33-6

2.1.2 Identification du type d'huile utilisé

L'huile lubrifiante utilisée dans le circuit de réfrigérant de l'unité est de type polyester. Dans tous les cas, se référer toujours à la plaque signalétique du compresseur.

Pour plus d'informations sur les caractéristiques du réfrigérant et de l'huile utilisés, se référer aux fiches des données de sécurité chez les fabricants de réfrigérant et d'huiles lubrifiantes.

Informations écologiques sur les principaux réfrigérants utilisés.

PROTECTION DE L'ENVIRONNEMENT: Lisez attentivement les informations écologiques et les instructions suivantes.

2.1.3 Persistance et dégradation

Les fluides frigorigènes utilisés se décomposent en basse atmosphère (troposphère) assez rapidement. Les produits de décomposition sont largement dispersibles, ils ont donc une très faible concentration. Ils n'influencent pas le smog photochimique (c'est-à-dire ils ne sont pas parmi les composés organiques volatils VOC, comme établi par l'accord de la CEE). Les réfrigérants R407C (R22, R125 et R134a) n'endommagent pas la couche d'ozone. Ces substances sont réglementées par le Protocole de Montréal (révision 1992) et le règlement CE n°. 2037/200 du 29 Juin 2000.

2.1.4 Effets sur le traitement des effluents

Les rejets dans l'atmosphère de ces produits ne provoquent pas de pollution de l'eau à long terme.

2.1.5 Contrôle de l'exposition et protection individuelle

Porter un vêtement de protection et des gants; toujours protéger les yeux et le visage.

2.1.6 Limites d'exposition professionnelle:

R410A HFC-32 TWA 1000 ppm HFC-125 TWA 1000 ppm

2.2 Manipulation

Les utilisateurs et le personnel d'entretien doivent être correctement informés sur les risques liés à la gestion des substances potentiellement toxiques. Si ces indications ne sont pas respectées, on peut encourir en blessures ou dommages à l'unité.

2.3 Éviter l'inhalation de concentrations élevées de vapeur

La concentration atmosphérique de fréon doit être minimisée le plus possible et maintenue à un niveau minimum, en dessous la limite d'exposition professionnelle. Les vapeurs sont plus lourdes que l'air et des concentrations dangereuses peuvent se former près du sol, où la ventilation est faible. Dans ce cas, assurer une ventilation adéquate. Éviter le contact avec flammes et surfaces chaudes, car cela peut donner lieu à la formation de produits de décomposition toxiques et irritants. Éviter tout contact entre le liquide et les yeux ou la peau.

2.4 Procédures en cas de fuite accidentelle de réfrigérant

Assurer une protection individuelle appropriée (en utilisant des moyens de protection respiratoire) pendant les opérations de nettoyage. Si les conditions sont suffisamment sûres, isoler la source de la fuite. Si le montant de la perte est limité, laisser évaporer le matériel à condition que la ventilation soit adéquate. Si la perte est importante, aérez la zone.

Contenir les déversements avec du sable, de la terre ou autre matériel absorbant approprié.

Empêcher que le réfrigérant pénètre dans les drains, les égouts, les sous-sols, car des vapeurs suffocantes peuvent se former.

2.5 Informations toxicologiques sur le type de fluide frigorigène utilisé

2.5.1 Inhalation

Une concentration élevée dans l'atmosphère peut provoquer des effets anesthésiants et une perte de conscience.

Une exposition prolongée peut provoquer des anomalies du rythme cardiaque et provoquer une mort soudaine.

Des concentrations plus élevées peuvent causer l'asphyxie par faible présence d'oxygène dans l'atmosphère.

2.5.2 Contact avec la peau

Des éclaboussures de liquides peuvent provoquer des gelures. Probablement il n'est pas dangereux pour l'absorption cutanée. Le contact prolongé ou répété peut causer le dégraissage de la peau entraînant sécheresse, fissures et dermatite.

2.5.3 Contact avec les yeux

Des éclaboussures de liquides peuvent provoquer des gelures.

2.5.4 Ingestion

Bien que très improbable, il peut causer des gelures.

2.6 Premiers secours

Suivez attentivement les avertissements et les mesures de premiers soins ci-dessous.

2.6.1 Inhalation

Déplacer le sujet de la source d'exposition et le garder au chaud et au repos. Administrer de l'oxygène si nécessaire. Pratiquer la respiration artificielle si la respiration s'est arrêtée ou est sur le point de s'arrêter. S'il y a arrêt cardiaque pratiquer un massage cardiaque externe. Consulter un médecin.

2.6.2 Contact avec la peau

En cas de contact avec la peau, laver immédiatement à l'eau tiède. Décongeler le tissu épidermique avec de l'eau. Retirer les vêtements contaminés. Les vêtements risquent de se coller à la peau en cas de gelures. En présence de cloques ou en cas d'irritation. Consulter un médecin.

2.6.3 Contact avec les yeux

Laver immédiatement avec une solution de lavage oculaire ou avec de l'eau. Maintenir les paupières ouvertes pendant au moins dix minutes. Consulter un médecin.

2 6 4 Ingestion

Ne pas faire vomir. Si la personne est consciente, rincer la bouche avec de l'eau et faire boire 200-300 ml d'eau. Consulter un médecin.

2.6.5 Autres soins médicaux

Traitement symptomatique et thérapie de soutien comme indiqué. Ne pas administrer de l'adrénaline ou de médicaments sympathomimétiques après l'exposition au risque d'arythmie cardiaque.

3. CARACTÉRISTIQUES TECHNIQUES

3.1 Description de l'appareil

Les pompes à chaleur air/eau à haute performance de la série P2U/P2S sont conçues pour application en plancher chauffant, ou lorsque le mode chaud est prioritaire. Les pompes à chaleur à haute performance de la série P4U/P4S sont des unités conçues pour systèmes de climatisation et chauffage à quatre tubes, qui permettent de produire en contemporaines ou séparément eau froide pour le refroidissement et eau chaude pour le chauffage. Les unités sont équipées d'un échangeur supplémentaire, utilisés en tant que condenseur pour l'eau chaude, ainsi la production de l'eau chaude est indépendante de la modalité de fonctionnement de l'unité. L'échangeur est activé automatiquement par le contrôle à microprocesseur quand la température de l'eau chaude sur le retour est inferieure au point de consigne configuré.

Ces unités peuvent produire eau chaude et eau froide en simultané ou séparément avec une efficacité énergétique très élevée. Elles sont toutes équipées d'un contrôle à microprocesseur spécifique fourni de logiciel pour la gestion des différentes priorités.

Les unités ont étayé développées dans le but d'optimiser les performances en mode chauffage, pouvant travailler jusqu'à une température externe de -20°C et produire eau jusqu'à 60°C.

Toutes les versions sont équipées avec vanne d'inversion de cycle pour la gestion du dégivrage en hiver ; la version HH (seulement pour les P2U/P2S) est conçue pour la seule production d'eau chaude, conformément aux normatives pour l'accès au crédit d'impôt dans certains pays. En configuration RV les unités peuvent aussi produire de l'eau réfrigérée.

Les versions XL ont en plus un niveau sonore extrêmement réduit grâce à l'application d'un système spécial de châssis flottant pour l'absorption des vibrations qui permet une réduction du niveau sonore d'environ 6-8 dB(A) (optionnel).

3.1.1 Châssis

Toutes les PAC LHA sont en acier galvanisé à chaud, avec revêtement d'un verni en poudre polyuréthane cuit à 180°C afin de les préserver de la corrosion. La carrosserie est facilement démontable pour un accès aisé aux différents organes. Toutes les visses et rivets sont en acier inox. Ceci permet la mise en place en air extérieur. La couleur standard est RAL 9018.

3.1.2 Circuit frigorifique

Les appareils sont chargés en fluide R410A. Les composants sont standards et disponibles sur le marché international, toutes les soudures sont réalisées conformément à la norme ISO 97/23. Chaque circuit frigorifique est indépendant, le dysfonctionnement d'un circuit n'affecte pas l'autre. Chaque circuit frigorifique est composé: voyant liquide, filtre déshydrateur, deux détendeurs thermique (un pour la partie chauffage et l'autre en mode réversible) avec équilibrage de pression externe, vanne d'inversion 4 voies, clapet anti retour, vanne 1 voie, bouteille récupérateur liquide, vanne schrader pour maintenance et contrôle, pressostat selon réglementation PED.

3.1.3 Compresseur

Les compresseurs utilisés sont de type scroll triphasé de type BPM (brushless permament magnet) à haute performance, contrôlé d'un Inverter, fourni avec une conception spécifique qui augmente l'efficacité du cycle de réfrigérant dans des conditions de température ambiance très basse. Toutes les tailles utilisent des compresseurs en configuration tandem, et sont toutes optimisées pour les applications de pompe à chaleur à haut rendement saisonnier (SCOP). Les compresseurs sont tous équipés de résistance carter et protection moteur. Ils sont dans un logement spécifique isolé phoniquement et séparé de la partie évaporateur à air pour réduire la transmission de bruit. La résistance de carter est toujours en marche quand le compresseur est en veille. Les composants sont accessibles à travers un panneau frontal, ce qui permet des inspections avec l'unité en marche.

3.1.4 Echangeur source

Les échangeurs a source sont constitués de tubes en cuivre et d'ailettes en aluminium. Le dimensionnement des tubes en cuivre et des ailettes en aluminium est optimisé afin d'obtenir d'excellentes performances. Les tubes sont filés mécaniquement dans les ailettes pour augmenter le facteur de transfert thermique. La géométrie de ces échangeurs de chaleur permet une faible valeur de pertes de charge côté air et donc la possibilité d'utiliser des ventilateurs à faible vitesse (avec pour conséquence une réduction du bruit de la machine). Tous les échangeurs de chaleur sont fournis en standard avec un traitement hydrophile des ailettes «Blue Fins».

3.1.5 Echangeur utilisateur (seulement P4U - P4S)

L'échangeur côté utilisateur est réalisé en plaques Inox AISI 316 soudés. L'utilisation de ces échangeurs à plaques permet de réduire la charge de fluide, et les dimensions de l'appareil si comparé aux échangeurs multitubulaires. Cet échangeur dispose d'une isolation thermique en mousse montée d'origine qui peut éventuellement être complété (option) d'une résistance anti gel. Chaque échangeur est équipé d'une sonde de protection anti-gel.

3.1.6 Ventilateurs axiaux E.C. à haute efficacité (VECE)

Ventilateurs axiaux E.C. à haute efficacité, équipés avec les nouveaux moteurs électriques Brushless à courant continue commutés électroniquement (moteur E.C.) en mesure de garantir les plus hautes classes d'efficacité énergétique (EFF1) en conformité aux nouvelles normes Européeennes, avec le résultat d'une substantielle réduction des consommations énergétiques dues à la ventilateurs sont réalisés en aluminium, de type axial avec aubes à profil alaire ultra efficace. Ils sont statiquement et dynamiquement équilibrés et

fournis complets de grille de protection, selon la norme EN 60335. Les ventilateurs sont installés sur l'unité par l'interposition d'un système de fixation qui annulle les vibrations transmise à la structure pour réduire le bruit de la machine. La vitesse de rotation nominale moyenne est de 700 rpm. Toutes les unités sont fournies équipées de dispositif de contrôle évaporation/condensation par transducteur et régulateur de tour ventilateur. Les moteurs électriques ont un degré de protection IP54.

3.1.7 Tableau electrique

Le tableau électrique est fabriqué conformément aux normes européennes 2014/35 et 2014/30. L'accès au tableau électrique est simple et rapide grâce aux panneaux articulés. Toutes les unités sont équipées en standard d'un relais de séquence de phase qui désactive le fonctionnement du compresseur si la séquence d'alimentation n'est pas correcte (les compresseurs Scroll ne peuvent en effet pas fonctionner dans le sens inverse de la rotation). Les composants suivants sont également installés en standard: Interrupteur principal, interrupteurs magnétothermiques (pour protéger les pompes et les ventilateurs), fusibles des compresseurs, relais des compresseurs, relais des ventilateurs, relais des pompes (si présent). Le tableau est également équipé d'un bornier avec des contacts secs pour la commutation été/hiver, d'un interrupteur marche/arrêt à distance et de contacts secs pour alarme générale.

3.1.8 Microprocesseur

Toutes les unités standard sont fournies complet avec panneau de contrôle. Le microprocesseur assure les fonctions suivantes: réglage température eau, protection gel, anti court cycle compresseur, séquençage automatique des compresseurs. Le panneau de contrôle est pourvu d'écran d'affichage et interface utilisateur. Dégivrage automatique (si les conditions ambiantes le demandent) ainsi que la commutation été/hiver (seulement pour les versions RV)

Le régulateur peut également gérer le programme anti légionellose avec résistance d'appoint, capteurs solaires, etc...contrôle et pilotage des ventilateurs à vitesse variable, pompe de charge pour l'ECS.

3.1.9 Contrôle et protection

Tous les appareils sont équipés des dispositifs de contrôle et de protection: sonde retour chauffage, sonde protection antigel départ chauffage, sonde de température retour et soufflage eau chaude sanitaire (seulement version P2S) pressostat HP et pressostat BP à réarmement automatique, vanne de sécurité HP, protection thermique moteur compresseur, protection thermique du ventilateur, transducteur de pression, contrôleur de débit. Toutes les unités sont également équipées d'une sonde de température avec la fonction «économie d'énergie», fourni dans une boîte en plastique séparé, qui peut être utilisé pour arrêter l'utilisateur de la pompe pendant les périodes de stand-by, lorsque la température de l'eau arrive à la valeur souhaitée. De cette manière, la consommation d'énergie de l'appareil est réduite.

3.1.10 Contrôleur de débit (seulement P4U - P4S)

Le contrôleur de débit est installé de série sur toutes les unités et en interrompt le fonctionnement en cas de dédits anormaux dans le système. Le contrôleur de débit est composé par un contacteur à palette combiné à deux aimants permanents qui mesurent la quantité d'eau en transit et, en fonction du paramètre mesuré, permettent ou pas le fonctionnement de l'unité.

3.1.11 Détendeur électronique (VTEE)

L'utilisation du détendeur électronique est particulièrement conseillé sur les unités qui se trouvent à travailler en conditions de charge variables. L'emploi de cette vanne permet en fait de maximiser l'échange thermique à l'échangeur utilisateur, réduire les délais de réponse aux variations de charge et optimiser la régulation de surchauffe garantissant l'efficacité énergétique maximale.

3.2 Versions

3.2.1 Version HH (Configuration P2U/P2S seulement)

Unités de chauffage uniquement, elles ne sont pas en mesure de produire l'eau réfrigéré.

3.2.2 Version RV

Unités réversibles avec inversion de cycle sur le circuit de refroidissement.

3.2.3 Version SE

Efficacité standard, selon norme ERP2018. Unité équipée avec ventilateurs EC.

3.2.4 Version LS

Cette version prévoit l'isolation du logement compresseurs par du matériel insonorisant à haute densité.

3.2.5 Version super silenciée XL

Toutes les unités versions super silenciée XL sont équipées de série avec un système spécial pour la réduction des vibrations, constitué

par un coffre flottant posé sur le châssis portant de l'unité, avec interposition de ressorts en acier à haute absorption. Dans ce coffre flottant sont logés les compresseurs, équipés avec supports antivibratoires en caoutchouc.Le coffre flottant est en plus soigneusement isolé à l'aide d'un tapis insonorisant à haute densité 4 kg/m³, épaisseur 25 mm, et tôle perforée. Ce dispositif réalise donc un double système d'absorption vibro/acoustique en cascade. Sur tous les tuyaux du circuit réfrigérant reliés aux compresseurs sont installés des raccords de type "anaconda" pour une absorption supplémentaire des vibrations. La même attention est portée aux tuyaux hydrauliques à l'aide de tuyaux flexibles prévus à cet effet. Ce système permet une réduction du niveau sonore de l'unité dans l'ordre de 10-12 dB(A) en comparaison à une unité en configuration standard.

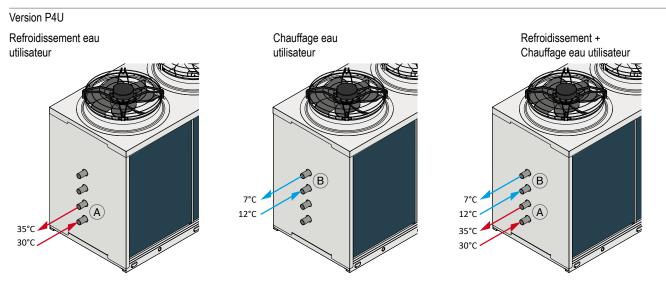
3.2.6 Version P2U

Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver et eau froide en été. L'unité est prévue pour installations à 2 tubes. Cette unité ne peut pas produire eau chaude sanitaire.

3.2.7 Version P2S

Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver, eau froide en été et eau chaude sanitaire durant toute l'année. L'unité est prévue pour installations à 2 tubes, équipée d'une vanne à trois voies (non fournie) pour la production d'eau chaude sanitaire en priorité.

3.2.8 Version P4U

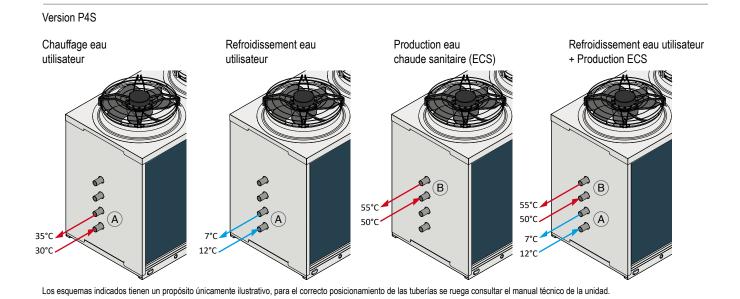

Les unités P4U utilisent 4 connexions hydrauliques et sont appliquées dans les modernes systèmes à 4 tubes. Ces systèmes permettent la production simultanée d'eau froide et d'eau chaude en utilisant 4 connexions hydrauliques, 2 connexions sont relatives au circuit eau chaude, 2 connexions sont relatives au circuit eau froide. Le système ainsi conçu peut chauffer et, tout au meme temps, si nécessaire, peut refroidir, avec une efficacité énergétique très élevée. En cette configuration, toutefois, les unités peuvent également produire séparément eau chaude ou eau froide, tout au long de l'année. Les unités sont fournies avec 2 échangeurs, un dédié à la production de l'eau froide et un dédié à la production de l'eau chaude.

Les modes de fonctionnement sont:

- 1. Chauffage eau utilisateur: L'unité fonctionne comme une normale pompe à chaleur air/eau en mode chauffage, en utilisant comme source l'échangeur à ailettes et comme utilisateur l'échangeur à plaques A.
- 2. Refroidissement eau utilisateur: L'unité fonctionne comme un normal refroidisseur air/eau en mode froid, en utilisant comme source l'échangeur à ailettes et comme utilisateur l'échangeur à plaques B.
- 3. Refroidissement + Chauffage eau utilisateur: L'unité fonctionne comme une pompe à chaleur eau/eau, en utilisant comme utilisateur froid l'échangeur à plaques B et comme utilisateur chaud l'échangeur à plaques A. Cette version ne peut pas produire d'eau chaude sanitaire.

3.2.9 Version P4S

Les unités P4S sont conçues pour répondre aux exigences des systèmes à 2+2 tubes (2 tubes côté utilisateur, 2 tubes côté eau chaude


Los esquemas indicados tienen un propósito únicamente ilustrativo, para el correcto posicionamiento de las tuberías se ruega consultar el manual técnico de la unidad.

sanitaire) durant toute l'année. Les unités sont équipées de 2 échangeurs, un dédié à la production de l'eau de réseau froide et chaude et un dédié à la seule production d'eau chaude sanitaire (E.C.S.). La production d'eau chaude sanitaire est toujours prioritaire. En mode hiver l'activation de la production d'E.C.S. mets momentanément à l'arrêt la production d'eau chaude sur le côté utilisateur, qui redémarre quand le ballon E.C.S. atteint le point de consigne configuré. En mode été l'unité commutera en refroidissement (par l'activation de la vanne d'inversion de cycle installée dans l'unité) et une demande éventuelle d'eau chaude sanitaire permet, en même temps, la production d'eau froide. Le système, en ce mode de fonctionnement, peut produire en simultané eau froide et eau chaude sanitaire.

L'eau chaude sanitaire, en mode été, est produite moyennant une récupération de chaleur et donc gratuitement. Quand la température mesurée par la sonde E.C.S. atteint le point de consigne, la pompe E.C.S. est arrêtée et on redémarre le normal fonctionnement en mode froid. Les modes de fonctionnement sont:

- **1. Chauffage eau utilisateur:** L'unité fonctionne comme une normale pompe à chaleur air/eau en mode chauffage, en utilisant comme source l'échangeur à ailettes et comme utilisateur l'échangeur à plagues A.
- 2. Refroidissement eau utilisateur: L'unité fonctionne comme un normal refroidisseur air/eau en mode froid, en utilisant comme source l'échangeur à ailettes et comme utilisateur l'échangeur à plaques A.
- 3. Production eau chaude sanitaire (ECS): L'unité fonctionne comme une normale pompe à chaleur air/eau en mode chauffage, en utilisant comme source l'échangeur à ailettes et comme utilisateur l'échangeur à plaques B (un échangeur dédié à l'ECS qui travaille avec un point de consigne plus important).
- **4. Refroidissement eau utilisateur + Chauffage ECS:** L'unitè fonctionne comme une pompe à chaleur eau/eau, en utilisant comme source (ou production d'eau glacée) l'échangeur à plaque A et comme ECS l'échangeur à plaques B.

3.3 Accessoires

3.3.1 Bac à condensât avec résistance antigel (BRCA)

Elle est utilisée pour la récolte du condensât produit par la pompe à chaleur durant le dégivrage. Elle est équipée avec une résistance antigel pour prévenir la formation de glace dans le bac en cas de conditions ambiantes extrêmes.

3.3.2 Kit antigel (RAEV2, RAEV4)

Constitué par un câble chauffant qui entoure les échangeurs de chaleur côté utilisateur et eau chaude sanitaire (où prévu) et aux tuyaux hydrauliques. Ce dispositif est contrôlé par le microprocesseur.

3.3.3 Pieds caoutchouc anti vibratiles (KAVG)

À interposer entre l'unité et le sol pour éviter la transmission de vibrations (donc du bruit) aux structures du bâtiment.

3.3.4 Carte interface sériale RS 485 avec protocole MODBUS (INSE)

Utilisée pour connecter l'unité à un système BMS en utilisant le protocole MODBUS.

3.3.5 Soft starter électronique (DSSE)

Le soft starter réduit le pic du courant de démarrage de 40% par rapport au courant nominal de démarrage. Cet accessoire peut être seulement installé en usine.

3.3.6 Commande déportée (PCRL)

Toutes les unités sont fournies de commande déportée avec afficheur à haute résolution, installé sur l'unité et déportable jusqu'à 50mt.

3.3.7 Kit antigel circuit hydraulique (KP)

Utilise un câble chauffant qui est enroulé sur l'échangeur utilisateur, sur l'échangeur ECS (versions P4 seules) et aux tuyaux hydrauliques plus une résistance blindée insérée dans le ballon tampon pour éviter la formation de givre. Ce dispositif est contrôlé par le microprocesseur.

3.3.8 Module hydraulique 1 pompe + réservoir circuit utilisateur (A1ZZU)

Comprend: ballon tampon de différentes capacités (en fonction de la grandeur de l'unité), thermiquement isolé en usine et adapté pour l'utilisation d'éventuelles résistances antigel ou d'intégration (optionnelles). Le ballon tampon est installé sur la sortie eau pour minimiser les fluctuations inévitables de la température de l'eau réduisant ainsi les cycles marche/arrêt du compresseur. L'installation du ballon tampon sur la sortie maintient la température de l'eau constante même avec compresseurs à l'arrêt. Ce type de contrôle n'est pas possible si le ballon tampon est monté sur le retour. Une pompe de circulation, de type centrifuge, directement gérée par le microprocesseur qui en contrôle les mises en marche et le bon fonctionnement. Dans le circuit hydraulique on trouve aussi le vase d'expansion, la vanne de sécurité (si demandée par la norme PED) et éventuelles vannes d'interception manuelles.

3.3.9 Module hydraulique 2 pompes + réservoir circuit utilisateur (A2ZZU)

Comprend: ballon tampon de différentes capacités (en fonction de la grandeur de l'unité), thermiquement isolé en usine et adapté pour l'utilisation d'éventuelles résistances antigel ou d'intégration (optionnelles). Le ballon tampon est installé sur la sortie eau pour minimiser les fluctuations inévitables de la température de l'eau réduisant ainsi les cycles marche/arrêt du compresseur. L'installation du ballon tampon sur la sortie maintient la température de l'eau constante même avec compresseurs à l'arrêt. Ce type de contrôle n'est pas possible si le ballon tampon est monté sur le retour. Deux pompes de circulation (marche + veille), de type centrifuge, directement gérées par le microprocesseur qui en contrôle les mises en marche et le bon fonctionnement. Dans le circuit hydraulique on trouve aussi le vase d'expansion, la vanne de sécurité (si demandée par la norme PED) et éventuelles vannes d'interception manuelles.

3.3.10 Module hydraulique 1 pompe circuit utilisateur (A1NTU)

Comprend: une pompe de circulation, vanne de sécurité (si demandée par la norme PED)

3.3.11 Module hydraulique 1 pompe circuit ECS (A1NTR)

Comprend: une pompe de circulation, vase d'expansion, vanne de sécurité (si demandée par la norme PED).

3.3.12 Module hydraulique 2 pompes circuit utilisateur (A2NTU)

Comprend: deux pompes de circulation (marche + veille), vanne de sécurité (si demandée par la norme PED)

3.3.13 Module hydraulique 2 pompes circuit ECS (A2NTR)

Comprend: deux pompes de circulation (marche + veille), vase d'expansion, vanne de sécurité (si demandée par la norme PED)

3.3.14 Système de gestion en cascade (SGRS)

Système MAITRE-ESCLAVE pour gestion des unités en cascade, réalisé dans un tableau électrique dédié, à installer dans un local technique et relier aux unités. Le système permet la gestion en cascade par interface seriale RS485.

3.3.15 Disponibilité d'accessoires

LHi SE/HH-RV		532	632	742	862	912	1052	1222
Filtre à eau côté utilisateur		•	•	•	•	•	•	•
Technologie "Floating frame" - Version XL		•	•	•	•	•	•	•
Ventilateurs EC - Version SE	VECE	•	•	•	•	•	•	•
Bac à condensât avec résistance antigel	BRCA	0	0	0	0	0	0	0
Kit antigel - version P4	RAEV4	0	0	0	0	0	0	0
Soft starter électronique	DSSE	0	0	0	0	0	0	0
Carte interface sériale RS485	INSE	•	•	•	•	•	•	•
Pieds caoutchouc anti vibratiles	KAVG	0	0	0	0	0	0	0
Commande déportée	PCRL	0	0	0	0	0	0	0
Détendeur électronique	VTEE	•	•	•	•	•	•	•
Système de mise en phase	RICO	0	0	0	0	0	0	0
Système de mise en phase avec soft starter	RICSS	0	0	0	0	0	0	0
Ressort amortisseur	KAVM	0	0	0	0	0	0	0
Grille de protection batterie	GBPE	0	0	0	0	0	0	0
Robinet de refoulement des compresseurs	RDCO	0	0	0	0	0	0	0
Robinet sur l'aspiration des compresseurs	RHCO	0	0	0	0	0	0	0
Module hydraulique 1 pompe inverter	A1VSU	0	0	0	0	0	0	0
Module hydraulique 1 pompe circuit utilisateur	A1NTU	0	0	0	0	0	0	0
Module hydraulique 1 pompe haute prévalence	A1HPU	0	0	0	0	0	0	0
Module hydraulique 2 pompes circuit utilisateur	A2NTU	0	0	0	0	0	0	0
Module hydraulique 1 pompe inverter + réservoir circuit utilisateur	A1VVU	0	0	0	0	0	0	0
Module hydraulique 1 pompe + réservoir circuit utilisateur	A1ZZU	0	0	0	0	0	0	0
Mod. hydraulique 1 pompe haute prévalence + réservoir circuit utilisateur	A1HHU	0	0	0	0	0	0	0
Module hydraulique 2 pompe + réservoir circuit utilisateur	A2ZZU	0	0	0	0	0	0	0
Réservoir 4 voies et pompe de recirculation	BUF4A	0	0	0	0	0	0	0
Module hydraulique 1 pompe de récupération de chaleur	A1NTR (1)	0	0	0	0	0	0	0
Mod. hydraulique 1 pompe haute prévalence de récupération de chaleur	A1HPR (1)	0	0	0	0	0	0	0
Module hydraulique 2 pompes de récupération de chaleur	A2NTR (1)	0	0	0	0	0	0	0
Kit antigel en combinaison avec A1VSU / A1NTU / A1HPU *	KPU1 (2)	0	0	0	0	0	0	0
Kit antigel en combinaison avec A2NTU *	KPU2 (2)	0	0	0	0	0	0	0
Kit antigel en combinaison avec pompe et réservoir *	KPSU1 (2)	0	0	0	0	0	0	0
Kit antigel en combinaison avec pompes et réservoir *	KPSU2 (2)	0	0	0	0	0	0	0
Kit antigel en combinaison avec A1NTR / A1HPR	KPR1 (1)	0	0	0	0	0	0	0
Kit antigel en combinaison avec A2NTR	KPR2 (1)	0	0	0	0	0	0	0

⁽¹⁾ Seulement pour P4U/P4S(2) Comprend l'accessoire RAEV2

[•] Standard O Option - Non disponible

LHi SE/HH-RV		1534	1654	1854	1964	2254	2554
Filtre à eau côté utilisateur		•	•	•	•	•	•
Technologie "Floating frame" - Version XL		_	-	-	-	-	-
Ventilateurs EC - Version SE	VECE	•	•	•	•	•	•
Bac à condensât avec résistance antiqel	BRCA	0	0	0	0	0	0
Kit antigel - version P4	RAEV4	0	0	0	0	0	0
Soft starter électronique	DSSE	0	0	0	0	0	0
Carte interface sériale RS485	INSE	•	•	•	•	•	•
Pieds caoutchouc anti vibratiles	KAVG	0	0	0	0	0	0
Commande déportée	PCRL	0	0	0	0	0	0
Détendeur électronique	VTEE	•	•	•	•	•	•
Système de mise en phase	RICO	0	0	0	0	0	0
Système de mise en phase avec soft starter	RICSS	0	0	0	0	0	0
Ressort amortisseur	KAVM	0	0	0	0	0	0
Grille de protection batterie	GBPE	0	0	0	0	0	0
Robinet de refoulement des compresseurs	RDCO	0	0	0	0	0	0
Robinet sur l'aspiration des compresseurs	RHCO	0	0	0	0	0	0
Module hydraulique 1 pompe inverter	A1VSU	0	0	0	0	0	0
Module hydraulique 1 pompe circuit utilisateur	A1NTU	0	0	0	0	0	0
Module hydraulique 1 pompe haute prévalence	A1HPU	0	0	0	0	0	0
Module hydraulique 2 pompes circuit utilisateur	A2NTU	0	0	0	0	0	0
Module hydraulique 1 pompe inverter + réservoir circuit utilisateur	A1VVU	0	0	0	0	0	0
Module hydraulique 1 pompe + réservoir circuit utilisateur	A1ZZU	0	0	0	0	0	0
Mod. hydraulique 1 pompe haute prévalence + réservoir circuit utilisateur	A1HHU	0	0	0	0	0	0
Module hydraulique 2 pompe + réservoir circuit utilisateur	A2ZZU	0	0	0	0	0	0
Réservoir 4 voies et pompe de recirculation	BUF4A	0	0	0	0	0	0
Module hydraulique 1 pompe de récupération de chaleur	A1NTR (1)	0	0	0	0	0	0
Mod. hydraulique 1 pompe haute prévalence de récupération de chaleur	A1HPR (1)	0	0	0	0	0	0
Module hydraulique 2 pompes de récupération de chaleur	A2NTR (1)	0	0	0	0	0	0
Kit antigel en combinaison avec A1VSU / A1NTU / A1HPU *	KPU1 (2)	0	0	0	0	0	0
Kit antigel en combinaison avec A2NTU *	KPU2 (2)	0	0	0	0	0	0
Kit antigel en combinaison avec pompe et réservoir *	KPSU1 (2)	0	0	0	0	0	0
Kit antigel en combinaison avec pompes et réservoir *	KPSU2 (2)	0	0	0	0	0	0
Kit antigel en combinaison avec A1NTR / A1HPR	KPR1 (1)	0	0	0	0	0	0
Kit antigel en combinaison avec A2NTR	KPR2 (1)	0	0	0	0	0	0

⁽¹⁾ Seulement pour P4U/P4S (2) Comprend l'accessoire RAEV2

Standard O Option - Non disponible

Version chauffage seul (HH)

SE/LS/HH - P2S/P2U		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511)	⁽¹⁾ kW	53,3	61,8	74,2	85,1	90,9	102,5	118,3	129,0	145,3	165,2	188,7	223,4	269,6
Energie consommée (EN14511)	⁽¹⁾ kW	13,2	14,7	18,7	20,0	22,1	24,9	28,5	31,2	34,0	39,1	44,8	55,1	65,8
COP (EN14511) (1)	W/W	4,04	4,19	3,97	4,25	4,11	4,12	4,15	4,14	4,27	4,23	4,21	4,06	4,10
Classe Énergétique (2)		A++												
SCOP (2)	kWh/kWh	3,88	3,93	3,90	3,98	3,92	3,93	3,88	3,95	3,93	4,00	3,90	3,88	3,88
ŋs,h (2)	%	152	154	153	156	154	154	152	155	154	157	153	152	152
Puissance sonore (3)	dB (A)	81	81	83	83	83	84	85	86	87	87	87	89	89
Pression sonore (4)	dB (A)	49	49	51	51	51	52	53	54	55	55	55	57	57
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	14,7	17,5	17,5	22,3	22,7	32,6	39,8	39,8	45,5	50,9	59,0
Potentiel réchauffement global (GV	NP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	30,7	36,5	36,5	46,5	47,4	68,0	83,2	83,2	95,0	106,2	123,1
Volume ballon tampon	I	140	300	300	500	500	500	500	300	500	500	500	500	500

SE/XL/HH - P2S/P2U		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511)	⁽¹⁾ kW	51,8	59,4	77,1	82,9	87,8	101,9	114,4	126,9	142,2	163,6	184,6	224,7	267,2
Energie consommée (EN14511)	⁽¹⁾ kW	12,8	14,3	18,6	19,8	21,5	24,2	27,7	30,1	32,3	37,7	42,9	53,3	63,8
COP (EN14511) (1)	W/W	4,04	4,15	4,15	4,20	4,08	4,21	4,13	4,22	4,41	4,35	4,31	4,22	4,19
Classe Énergétique (2)		A++												
SCOP (2)	kWh/kWh	3,95	4,10	4,08	4,13	4,10	4,03	4,00	4,18	4,28	4,25	4,18	4,15	4,13
ŋs,h ⁽²⁾	%	155	161	160	162	161	158	157	164	168	167	164	163	162
Puissance sonore (3)	dB (A)	76	77	78	78	79	79	80	80	80	80	82	83	84
Pression sonore (4)	dB (A)	44	45	46	46	47	47	48	48	48	48	50	51	52
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	16,3	17,5	17,5	22,3	22,7	32,6	39,8	39,8	32,5	50,9	59,0
Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	34,1	36,5	36,5	46,5	47,4	68,0	83,2	83,2	67,8	106,2	123,1
Volume ballon tampon	1	140	300	300	500	500	500	500	300	500	500	500	500	500

Conditions de fonctionnement:

(1)Chauffage: température air extérieure 7°C DB, 6°C WB, température eau chauffage 30/35°C.

(2) Conditions moyennes, basse température, variable - Reg EU 811/2013

⁽³⁾ Niveau puissance sonore en champ libre selon ISO 3744.

⁽⁴⁾ Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

Version réversible chaud/froid (RV)

SE/LS/RV - P2S/P2U		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511)	⁽¹⁾ kW	53,3	61,8	74,2	85,1	90,9	102,5	118,3	129,0	145,3	165,2	188,7	223,4	269,6
Energie consommée (EN14511)		13,2	14,7	18,7	20,0	22,1	24,9	28,5	31,2	34,0	39,1	44,8	55,1	65,8
COP (EN14511) (1)	W/W	4,04	4,19	3,97	4,25	4,11	4,12	4,15	4,14	4,27	4,23	4,21	4,06	4,10
Classe Énergétique (2)		A++												
SCOP ⁽²⁾	kWh/kWh	3.88	3,93	3,90	3,98	3,92	3,93	3,88	3,95	3,93	4,00	3,90	3,88	3,88
ŋs,h ⁽²⁾	%	152	154	153	156	154	154	152	155	154	157	153	152	152
Puissance chauffage (EN 14511) ⁽³⁾ kW	49,32	57,71	68,9	78,87	83,19	95,32	109,3	112,8	129,4	146,3	162,5	197,4	230,6
Pression sonore (EN 14511)(3)	kW	16,42	18,47	24,48	25,78	28,18	31,81	36,3	40,3	42,6	50,2	57,0	69,5	84,6
EER (EN 14511)(3)	W/W	3,00	3,12	2,81	3,06	2,95	3,00	3,01	2,80	3,04	2,91	2,85	2,84	2,72
Puissance sonore (5)	dB (A)	81	81	83	83	83	84	85	86	87	87	87	89	89
Pression sonore (6)	dB (A)	49	49	51	51	51	52	53	54	55	55	55	57	57
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	14,7	17,5	17,5	22,3	22,7	32,6	39,8	39,8	45,5	50,9	59,0
Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	30,7	36,5	36,5	46,5	47,4	68,0	83,2	83,2	95,0	106,2	123,1
Volume ballon tampon	- 1	140	300	300	500	500	500	500	300	500	500	500	500	500
SE/LS/RV - P4S		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511)	⁽¹⁾ kW	53,3	61,8	74,2	85,1	90,9	102,5	118,3	129,0	145,3	165,2	188,7	223,4	269,6
Energie consommée (EN14511)		13,2	14,7	18,7	20,0	22,1	24,9	28,5	31,2	34,0	39,1	44,8	55,1	65,8
COP (EN14511) (1)	W/W	4,04	4,19	3,97	4,25	4,11	4,12	4,15	4,14	4,27	4,23	4,21	4,06	4,10
Classe Énergétique (2)		A++												
SCOP (2)	kWh/kWh	3,88	3,93	3,90	3,98	3,92	3,93	3,88	3,95	3,93	4,00	3,90	3,88	3,88
ŋs,h ⁽²⁾	%	152	154	153	156	154	154	152	155	154	157	153	152	152
Puissance chauffage (EN 14511) ⁽³⁾ kW	49,32	57,71	68,9	78,87	83,19	95,32	109,3	112,8	129,4	146,3	162,5	197,4	230,6
Pression sonore (EN 14511) ⁽³⁾	kW	16,42	18,47	24,48	25,78	28,18	31,81	36,3	40,3	42,6	50,2	57,0	69,5	84,6
EER (EN 14511)(3)	W/W	3,00	3,12	2,81	3,06	2,95	3,00	3,01	2,80	3,04	2,91	2,85	2,84	2,72
TER (EN 14511)(4)		10,00	10,27	9,72	10,12	9,84	9,98	10,08	10,32	10,45	10,43	9,99	9,94	9,78
Puissance sonore (5)	dB (A)	81	81	83	83	83	84	85	86	87	87	87	89	89
Pression sonore (6)	dB (A)	49	49	51	51	51	52	53	54	55	55	55	57	57
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	14,7	17,5	17,5	22,3	22,7	32,6	39,8	39,8	45,5	50,9	59,0
Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	30,7	36,5	36,5	46,5	47,4	68,0	83,2	83,2	95,0	106,2	123,1
Volume ballon tampon	I	140	300	300	500	500	500	500	300	500	500	500	500	500

Conditions de fonctionnement:

- (1) Chauffage: température air extérieure 7°C DB, 6°C WB, température eau chauffage 30/35°C.
- (2) Conditions moyennes, basse température, variable Reg EU 811/2013
- (3) Refroidissement: temp. air extérieure 35°C, temp. eau refroidissement 12/7°C
- (4) TER: Total Energy Ratio circuit froid 12/7°C, circuit chaud 30/35°C
- (5) Niveau puissance sonore en champ libre selon ISO 3744.
- (6) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

Version réversible chaud/froid (RV)

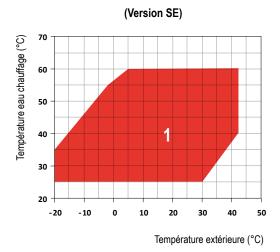
SE/LS/RV - P4U		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511) (1)	kW	53,2	61,8	74,5	86,4	90,9	102,4	118,3	129,5	146,2	166,9	189,9	224,4	270,6
Energie consommée (EN14511) (1)	kW	12,8	14,3	18,2	19,8	21,5	24,3	27,9	30,3	33,0	38,1	43,4	53,4	63,4
COP (EN14511) (1)	W/W	4,17	4,31	4,09	4,36	4,22	4,22	4,24	4,28	4,43	4,38	4,38	4,20	4,27
Classe Énergétique (2)	-	A++	Á++											
SCOP (2)	kWh/kWh	3,93	3.98	4.00	4.05	3,98	3,95	3,85	4.05	4,00	4,05	3.98	3,93	3,90
ŋs,h ⁽²⁾	%	154	156	157	159	156	155	151	159	157	159	156	154	153
Puissance chauffage (EN 14511) ⁽³⁾	kW	56,6	66,0	81,1	91,0	96,5	110,9	126,9	133,0	147,2	171,7	188,5	228,7	271,8
Pression sonore (EN 14511) ⁽³⁾	kW	12,6	14,2	18,6	19,9	21,8	24,7	27,9	28,5	31,2	36,4	41,9	51,1	61,9
EER (EN 14511)(3)	W/W	4,51	4,64	4,37	4,57	4,43	4,50	4,55	4,66	4,73	4,72	4,50	4,47	4,39
TER (EN 14511)(4)		10,00	10,27	9,72	10,12	9,84	9,98	10,08	10,32	10,45	10,43	9,99	9,94	9,78
Puissance sonore (5)	dB (A)	81	81	83	83	83	84	85	86	87	87	87	89	89
Pression sonore (6)	dB (A)	49	49	51	51	51	52	53	54	55	55	55	57	57
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	14,7	17,5	17,5	22,3	22,7	32,6	39,8	39,8	45,5	50,9	59,0
Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	30,7	36,5	36,5	46,5	47,4	68,0	83,2	83,2	95,0	106,2	123,1
Volume ballon tampon	I	140	300	300	500	500	500	500	300	500	500	500	500	500
SE/XL/RV - P2S/P2U		532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
Puissance chauffage (EN14511) (1)	kW	51,8	59,4	77,1	82,9	87,8	101,9	114,4	126,9	142,2	163,6	184,6	224,7	267,2
Energie consommée (EN14511) (1)	kW	12,8	14,3	18,6	19,8	21,5	24,2	27,7	30,1	32,3	37,7	42,9	53,3	63,8
COP (EN14511) (1)	W/W	4,04	4,15	4,15	4,20	4,08	4,21	4,13	4,22	4,41	4,35	4,31	4,22	4,19
Classe Énergétique (2)		A++												
SCOP (2)	kWh/kWh	3,95	4,10	4,08	4,13	4,10	4,03	4,00	4,18	4,28	4,25	4,18	4,15	4,13
ŋs,h ⁽²⁾	%	155	161	160	162	161	158	157	164	168	167	164	163	162
Puissance chauffage (EN 14511) ⁽³⁾	kW	48,0	55,9	70,4	76,4	80,4	91,9	105,7	109,4	124,9	140,1	154,6	198,5	231,8
Pression sonore (EN 14511) ⁽³⁾	kW	16,3	18,4	22,7	25,6	28,1	32,1	36,2	38,9	40,8	49,4	56,0	62,9	77,9
EER (EN 14511)(3)	W/W	2,86	2,96	3,00	2,90	2,79	2,80	2,84	2,68	2,93	2,73	2,67	2,97	2,83
Puissance sonore (5)	dB (A)	76	77	78	78	79	79	80	80	80	80	82	83	84
Pression sonore (6)	dB (A)	44	45	46	46	47	47	48	48	48	48	50	51	52
Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Réfrigérant		R410A												
Charge fréon	kg	10,4	14,7	16,3	17,5	17,5	22,3	22,7	32,6	39,8	39,8	32,5	50,9	59,0
Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
Tonnes équivalent CO ₂	t	21,8	30,7	34,1	36,5	36,5	46,5	47,4	68,0	83,2	83,2	67,8	106,2	123,1
Volume ballon tampon	I	140	300	300	500	500	500	500	300	500	500	500	500	500

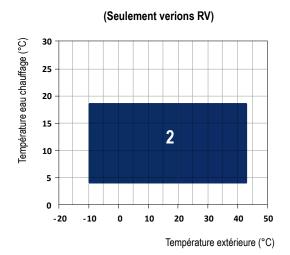
Conditions de fonctionnement:

- (1)Chauffage: température air extérieure 7°C DB, 6°C WB, température eau chauffage 30/35°C.
- (2) Conditions moyennes, basse température, variable Reg EU 811/2013
- (3) Refroidissement: temp. air extérieure 35°C, temp. eau refroidissement 12/7°C
- (4) TER: Total Energy Ratio circuit froid 12/7°C, circuit chaud 30/35°C
- (5) Niveau puissance sonore en champ libre selon ISO 3744.
- (6) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

Version réversible chaud/froid (RV)

Pussance chauffage (ENH4S11) NW 51.8 69.4 77.1 82.9 87.8 101.9 114.4 126.9 142.2 163.6 184.6 224.7 20.6	CE /VI /DV DAG		520	caa	740	000	042	4050	4222	4524	4CE4	4054	4004	2254	2554
Energie consommé (ENI4STI) NW 12,8 14,3 18,6 19,8 21,5 24,2 27,7 30,1 32,3 37,7 42,9 53,3 6	SE/XL/RV - P4S	134/	532	632	742	862	912	1052	1222	1534	1654	1854	1964	2254	2554
COPE (EN14511)*** W/W 4,04 4,15 4,15 4,15 4,20 4,08 4,21 4,13 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,22 4,41 4,35 4,31 4,15 4,35 4,31 4,22 4,33 4,31 4,22 4,31 4,15 4,35 4,31 4,22 4,31 4,15 4,35 4,31 4,22 4,33 4,31 4,22 4,31 4,31 4,22 4,31 4,				•	· · · · · · · · · · · · · · · · · · ·						· · ·				267,2
Classe Energétique	, ,											-			63,8
SCOP*** New New New No. 3,95 4,10 4,08 4,13 4,10 4,03 4,03 4,00 4,18 4,28 4,25 4,18 4,15 4,15 4,15 1,1	,	VV/VV				•							· · ·		4,19
Pulsance chauffage EN 14511															A++
Pussance chauffage (EN 14511) ⁶⁰							· ·						•		4,13
Pression sonore (EN 14511)*** kW 16,3	•														162
EER (EN 14511)	Puissance chauffage (EN 14511) ⁽³⁾														231,8
Terr En 14511 ***	Pression sonore (EN 14511) ⁽³⁾	kW	16,3	18,4		•	28,1	32,1	36,2				56,0	62,9	77,9
Puissance sonore (a) dB (A) 76 77 78 78 78 79 79 80 80 80 80 80 80 80 82 83 84 87 89 87 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	EER (EN 14511) ⁽³⁾	W/W	2,86	2,96	3,00	2,90	2,79	2,80	2,84	2,68	2,93	2,73	2,67	2,97	2,83
Pression sonore ® dB A	TER (EN 14511)(4)		10,00	10,27	9,72	10,12	9,84	9,98	10,08	10,32	10,45	10,43	9,99	9,94	9,78
Alimentation V/Ph/Hz 400/3/50	Puissance sonore (5)	dB (A)	76	77	78	78	79	79	80	80	80	80	82	83	84
Compresseurs / Circuits	Pression sonore (6)	dB (A)	44	45	46	46	47	47	48	48	48	48	50	51	52
Ventilateur	Alimentation	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Réfrigérant R410A	Compresseurs / Circuits	n°/n°	2/1	2/1	2/1	2/1	2/1	2/1	2/1	4/2	4/2	4/2	4/2	4/2	4/2
Charge fréon kg 10,4 14,7 16,3 17,5 17,5 22,3 22,7 32,6 39,8 39,8 32,5 50,9 55 Potentiel réchauffement global (GWP) 2088 2088 2088 2088 2088 2088 2088 208	Ventilateur	n°	2	2	2	3	3	3	4	2	3	3	3	4	4
Potentiel réchauffement global (GWP) 2088 208	Réfrigérant		R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A
Tonnes équivalent CO2 t 21,8 30,7 34,1 36,5 36,5 46,5 47,4 68,0 83,2 83,2 67,8 106,2 12 Volume ballon tampon 140 300 300 500 500 500 500 500 500 500 50	Charge fréon	kg	10,4	14,7	16,3	17,5	17,5	22,3	22,7	32,6	39,8	39,8	32,5	50,9	59,0
Volume ballon tampon 140 300 300 500	Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
SE/XL/RV - PAU S32 632 742 862 912 1052 1222 1534 1654 1864 1964 2254 2254 2254 2255 22	Tonnes équivalent CO ₂	t	21,8	30,7	34,1	36,5	36,5	46,5	47,4	68,0	83,2	83,2	67,8	106,2	123,1
Puissance chauffage (EN14511)	Volume ballon tampon		140	300	300	500	500	500	500	300	500	500	500	500	500
Puissance chauffage (EN14511)	CE /VI /DV DAIL		522	622	749	060	042	1052	4222	4524	1654	1051	1064	2254	2554
Energie consommée (EN14511) (1) kW 12,4 13,9 18,0 19,3 20,9 23,6 27,1 29,2 31,6 36,4 41,5 50,6 6 COP (EN14511) (1) W/W 4,14 4,25 4,29 4,30 4,18 4,14 4,21 4,36 4,56 4,46 4,46 4,29 4 Classe Énergétique (2) A++ A++ A++ A++ A++ A++ A++ A++ A++ A+		LAA													
COP (EN14511) W/W 4,14 4,25 4,29 4,30 4,18 4,14 4,21 4,36 4,56 4,46 4,46 4,29 4 Classe Énergétique A++ A	, , ,				•				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			264,7
Classe Énergétique (2) RA++ A++ A++ A++ A++ A++ A++ A++ A++ A++	, ,										•				61,8
SCOP (2) kWh/kWh 3,98 4,15 4,15 4,18 4,13 4,08 4,03 4,28 4,38 4,38 4,33 4,20 4 ŋs,h (2) % 156 163 163 164 162 160 158 168 172 172 170 165 1 Puissance chauffage (EN 14511)(3) kW 48,0 55,9 70,4 76,4 80,4 91,9 105,7 109,4 124,9 140,1 154,6 198,5 23 Pression sonore (EN 14511)(3) kW 16,3 18,4 22,7 25,6 28,1 32,1 36,2 38,9 40,8 49,4 56,0 62,9 7 EER (EN 14511)(4) 10,00 10,27 9,72 10,12 9,84 9,98 10,08 10,32 10,45 10,43 9,99 9,94 9 Puissance sonore (5) dB (A) 76 77 78 78 79 79 80 80 80	, ,	VV/VV						•					•		4,29
Puissance chauffage (EN 14511) ⁽³⁾ kW 48,0 55,9 70,4 76,4 80,4 91,9 105,7 109,4 124,9 140,1 154,6 198,5 23		1380 0380													A++
Puissance chauffage (EN 14511) ⁽³⁾ kW 48,0 55,9 70,4 76,4 80,4 91,9 105,7 109,4 124,9 140,1 154,6 198,5 23 Pression sonore (EN 14511) ⁽³⁾ kW 16,3 18,4 22,7 25,6 28,1 32,1 36,2 38,9 40,8 49,4 56,0 62,9 7 EER (EN 14511) ⁽³⁾ W/W 2,86 2,96 3,00 2,90 2,79 2,80 2,84 2,68 2,93 2,73 2,67 2,97 2 TER (EN 14511) ⁽⁴⁾ 10,00 10,27 9,72 10,12 9,84 9,98 10,08 10,32 10,45 10,43 9,99 9,94 9, Puissance sonore ⁽⁵⁾ dB (A) 76 77 78 78 78 79 79 80 80 80 80 80 82 83 8 Pression sonore ⁽⁶⁾ dB (A) 44 45 46 46 46 47 47 48 48 48 48 48 50 51 \$51 \$5 Alimentation V/Ph/Hz 400/3/50 4				•	· ·		· ·						•	· ·	4,15
Pression sonore (EN 14511)(3)	-														163
EER (EN 14511)(3) W/W 2,86 2,96 3,00 2,90 2,79 2,80 2,84 2,68 2,93 2,73 2,67 2,97 2 TER (EN 14511)(4) 10,00 10,27 9,72 10,12 9,84 9,98 10,08 10,32 10,45 10,43 9,99 9,94 9 Puissance sonore (6) dB (A) 76 77 78 78 79 79 80 80 80 80 82 83 8 Pression sonore (6) dB (A) 44 45 46 46 47 47 48 48 48 48 50 51 5 Alimentation V/Ph/Hz 400/3/50	,														231,8
TER (EN 14511)(4) 10,00 10,27 9,72 10,12 9,84 9,98 10,08 10,32 10,45 10,43 9,99 9,94 9 9 9 9 9 9 9 9 9 9 9 9	,														77,9
Puissance sonore (6) dB (A) 76 77 78 78 78 79 79 80 80 80 80 80 82 83 88 Pression sonore (6) dB (A) 44 45 46 46 47 47 48 48 48 48 48 48 50 51 51 58 Alimentation V/Ph/Hz 400/3/50 400/3	,	W/W													2,83
Pression sonore (6) dB (A) 44 45 46 46 47 47 48 48 48 48 48 50 51 51 55 Alimentation V/Ph/Hz 400/3/50				10,27	9,72	10,12	9,84	9,98	10,08	10,32	•			9,94	9,78
Alimentation V/Ph/Hz 400/3/50		. ,													84
Compresseurs / Circuits n° /n° 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 4 / 2 3 / 3 3 4 Réfrigérant R410A R410A <td>Pression sonore (6)</td> <td></td> <td>-</td> <td>52</td>	Pression sonore (6)													-	52
Ventilateur n° 2 2 2 2 3 3 4 2 3 3 3 4 Réfrigérant R410A															
Réfrigérant R410A	Compresseurs / Circuits								2/1						4/2
Charge fréon kg 10,4 14,7 16,3 17,5 17,5 22,3 22,7 32,6 39,8 39,8 32,5 50,9 59 Potentiel réchauffement global (GWP) 2088 2088 2088 2088 2088 2088 2088 208		n°	2											4	4
Potentiel réchauffement global (GWP) 2088 2088 2088 2088 2088 2088 2088 208	-		R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A
• • •	Charge fréon	kg	10,4	14,7	16,3	17,5	17,5	22,3	22,7	32,6	39,8	39,8	32,5	50,9	59,0
Tonnes équivalent CO t 21.8 30.7 34.1 36.5 36.5 46.5 47.4 68.0 83.2 83.2 67.8 106.2 12	Potentiel réchauffement global (GV	VP)	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088	2088
12 11.0 00,1 04,1 00,0 00,0 40,0 41,4 00,0 00,2 00,2 01,0 100,2 12	Tonnes équivalent CO ₂	t	21,8	30,7	34,1	36,5	36,5	46,5	47,4	68,0	83,2	83,2	67,8	106,2	123,1
Volume ballon tampon 140 300 300 500 500 500 500 300 500 500 50	Volume ballon tampon		140	300	300	500	500	500	500	300	500	500	500	500	500


Conditions de fonctionnement:


- (1)Chauffage: température air extérieure 7°C DB, 6°C WB, température eau chauffage 30/35°C.
- (2) Conditions moyennes, basse température, variable Reg EU 811/2013
- (3) Refroidissement: temp. air extérieure 35°C, temp. eau refroidissement 12/7°C
- (4) TER: Total Energy Ratio circuit froid 12/7°C, circuit chaud 30/35°C
- (5) Niveau puissance sonore en champ libre selon ISO 3744.
- (6) Niveau pression sonore à 10 m en champ libre selon conditions ISO 3744.

3.5 Limites de fonctionnement

- 1 Mode de chauffage
- Mode de refroidissement

3.5.1 Débit d'eau échangeur côté utilisateur

Le débit d'eau nominale est calculé sur un écart thermique à l'évaporateur de 5°C. Le débit d'eau maximum admissible est calculée sur un écart thermique de 3°C. Des valeurs supérieures peuvent provoquer des pertes de charge trop élevées. Le débit d'eau minimum admissible est calculé sur un écart thermique de 8°C. Débits d'eau insuffisants peuvent causer température non conformes dans le circuit frigorifique avec conséquente l'intervention des organismes de sécurité et arrêt de l'unité.

3.5.2 Température eau échangeur côté utilisateur (mode hiver)

Une fois atteint le point de consigne, la température en entrée de l'échangeur côté utilisateur ne doit pas descendre en dessous les 30°C; des valeurs inférieures peuvent entrainer des anomalies de fonctionnement du compresseur avec possibles ruptures. La température maximale de l'eau en sortie de l'échangeur côté utilisateur ne doit pas dépasser les 60°C. En cas contraire l'action des dispositifs de sécurité arrête l'unité.

3.5.3 Température eau réfrigérée (Versions RV seules)

La température minimale admissible à la sortie de l'échangeur côté utilisateur est 4°C; pour des températures plus basses l'unité nécessite des modifications structurales. Dans ce cas contactez notre bureau technique. La température maximale eau produite est 18°C.

3.5.4 Température ambiante

Les unités sont conçues et fabriqueées pour travailler en mode hiver (mode chauffage) entre -20°C e 43°C. En mode refroidissement les unités peuvent travailler avec une température ambiante entre -10°C e i 43°C.

Dans le cas où l'unité soit installée en zones particulièrement exposées au vent, il est nécessaire prévoir des barrières pour éviter dysfonctionnements. On recommande l'installation des barrières si la vitesse du vent dépasse les 2,5 m/s.

Les appareils, en configuration standard, ne sont pas conçus pour installation en milieu salin.

En mode HIVER l'unit peut être mise en marche avec air extérieure -20°C et eau froide sur le retour (environ 20°C). Le fonctionnement dans tels conditions est permis seulement pour des brefs périodes et seulement pour amener à régime le système.

Pour réduire le délais de mise en régime du système, on conseille l'installation d'une vanne trois voies qui permette le bypass de l'eau entre utilisateur et installation, jusqu'à ce que les conditions qui permettent a l'unité de travailler correctement soient atteinte.

Les unités sont assemblées selon les standards techniques et le normes de sécurité en vigueur dans la Communauté Européenne. Les unités ont étés conçues exclusivement pour le chauffage et refroidissement et doivent être destinées à cet usage en conformité aux caractéristiques prestationnelles. Le Fabricant est exempté de toute responsabilité contractuelle et extra-contractuelle pour dommages causés à personnes, animaux et choses dérivant d'erreurs d'installation, réglage et maintenance ou par usage inapproprié. Toutes les applications ne pas expressement indiquées dans ce manuel ne sont pas admis.

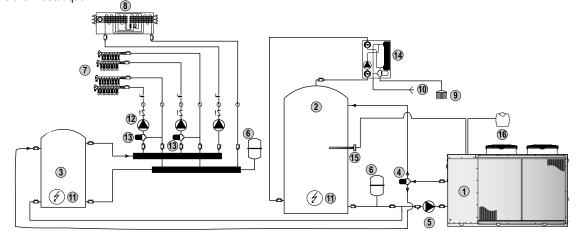
Si le fonctionnement est requis en mode chauffage avec des températures extérieures supérieures à 15°C ou en mode refroidissement avec des températures extérieures inférieures à 20°C, un contrôle de pression d'évaporation/condensation (DCCF) doit être utilisée. Ce dispositif permet d'opérer en conditions d'air ambiante supérieures à 15°C en mode chaud et inférieures à 20°C en mode froid. Le dispositif régule le débit de l'air Mesuré par un transducteur pour garantir, de cette façon, des paramètres corrects de fonctionnement. Ce dispositif peut être utilisé entre-autre, pour réduire les émissions de bruit de l'unité en mode froid quand la température ambiante est en diminution (par exemple la nuit). Le contrôle est paramètré en usine. Les valeurs ne doivent jamais être modifiées.

En cas de fonctionnement en dehors de ces valeurs on vous prie de contacter le Fabricant.

3.6 Production eau chaude sanitaire (P2S Versions)

La production d'eau chaude sanitaire moyennant pompe à chaleur est une question délicate qui mérite les adéquates considérations. On est confronté à de nombreux systèmes pour produire eau chaude sanitaire avec une pompe à chaleur, chacun avec ses avantages et désavantages. Ce n'est pas le but de ce manuel d'affronter l'argument et, si nécessaire, on vous prie de contacter le Fabriquant pour des réponses adéquates.

En ligne générale, on peut dire que sur le marché on a deux solutions principales, pour ce qui concerne la production d'eau chaude sanitaire.:


3.6.1 Solution 1

Celle-ci est la solution conçue pour les bâtiments neufs, là où la configuration générale de l'installation peut être étudiée en fonction de l'application spécifique.

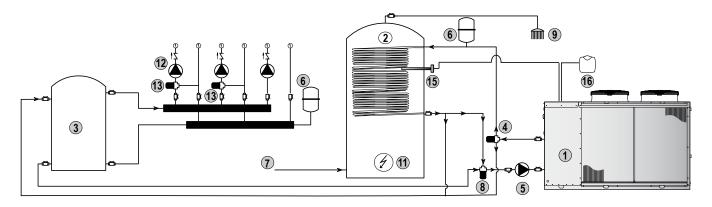
L'eau chaude sanitaire est produite "instantanément" en utilisant un échangeur de chaleur instantané (préparateur instantané d'eau chaude sanitaire), combiné à un ballon à température constante d'"eau technique".

Avec ce système on peut obtenir 3 avantages importants:

- Qualité de l'eau chaude sanitaire. Car l'eau chaude sanitaire n'est pas stocké dans un réservoir, il n'est pas nécessaire de la chauffer à température élevée pour qu'elle soit désinfectée bactériologiquement. L'aintgène de Legionella étant en fait présent seulement en eau dormante.
- Efficacité énergétique: l'"eau technique" à l'intérieur du ballon est maintenue à une température de quelque dégrée plus haute que la température demandée sur l'eau chaude sanitaire et il n'est pas nécessaire augmenter la température du ballon à 63-65°C (température à laquelle l'antigène Legionella est tué) ù. De cette façon on peut entre-autre éviter l'intégration par résistances électriques, ou les employer seulement en cas de dysfonctionnement de la pompe à chaleur ou en conditions ambiantes extrêmes.
- Réduction des phénomènes d'encrassement ayant comme résultat une augmentation de la durée de vie opérationnelle de l'installation. Dans ce cas, l'échangeur de chaleur de l'eau chaude sanitaire doit être relié à un ballon de stockage en circuit fermé. Contacter le Fabriquant pour le correct dimensionnement. Pour connecter le réservoir eau chaude sanitaire E.C.S. il est nécessaire installer tous les composants illustrés dans le dessin ci-dessous. Le ballon E.C.S. est connecté à un échangeur de chaleur (serpentin en cuivre ou échangeur à plaques, selon modèle). La pompe à chaleur doit être reliée au réservoir ECS. Ceci est nécessaire pour garantir le bon fonctionnement de l'unité, évitant les anti-courts cycles. L'entrée et la sortie du ballon ECS sont reliés à l'échangeur de chaleur du préparateur instantané. Ceci assurera un échange thermique direct entre l'"eau technique" stockée dans le ballon ECS et l'eau chaude sanitaire qui passe dans l'échangeur de chaleur. Il est fortement recommandé de contrôler la température de sortie de l'eau chaude sanitaire moyennant une vanne thermostatique.

1	Pompe à chaleur	2	Ballon tampon eau chaude sanitaire ECS
3	Ballon tampon utilisateur	4	Vanne 3 voies ON/OFF Chauffage/ECS
5	Pompe de circulation circuit primaire utilisateur	6	Vase d'expansion
7	Chauffage radiant au sol	8	Déshumidificateur/Rafraîchissement
9	Eau chaude sanitaire	10	Eau froide sanitaire
11	Résistances électriques d'intégration	12	Pompes de circulation circuit secondaire utilisateur
13	Vannes modulantes chauffage au sol	14	Producteur instantané eau chaude sanitaire
15	Sonde eau chaude sanitaire	16	Sonde de compensation air externe

3.6.2 Solution 2


Celle-ci est la solution indiquée pour toute application où on ne peut pas remplacer les systèmes existants. On accumule l'eau chaude sanitaire dans le ballon ECS existant (qui pourrait ne pas être correctement dimensionné pour fonctionner avec une nouvelle pompe à chaleur), utilisant l'échangeur de chaleur présent dans le réservoir ECS. De cette façon le seul avantage que l'on obtient est la possibilité d'utiliser le ballon ECS existant.

Cette solution est un compromis entre coûts et performances et doit être correctement dimensionnée pour avoir une quantité suffisante d'eau chaude en sortie des robinets. Le risque principal de ce système est un mauvais dimensionnement de l'échangeur à l'intérieur du ballon ECS, qui provoque des anti-courts cycles et des fréquents alarmes de haute pression. Ceci arrive car la pompe à chaleur produit une puissance thermique beaucoup plus élevée à celle dissipée par l'échangeur ECS. Le résultat est que la pompe à chaleur est souvent en veille, avec la possibilité de fréquents alarmes de haute pression, et **EAU FROIDE dans le BALLON ECS**.

Pour aider la pompe à chaleur dans cette typologie d'installation, il est nécessaire de prévoir une vanne modulante à 3 voies (8) comme illustré dans le dessin ci-dessous. La vanne, en fonction de la température d'eau mesurée par la sonde de reprise, installée d'usine, gère l'ouverture de la connexion de bypass vers le côté utilisateur du système hydraulique, dans le but d'utiliser **LE PLUS POSSIBLE**, la puissance de l'échangeur de chaleur existant. La vanne modulante à 3 voies (8) est contrôlée par le microprocesseur.

Cette solution est disponible seulement pour les systèmes à 2 tubes. Elle ne trouve pas d'application sur les unités en version à 4 tubes.

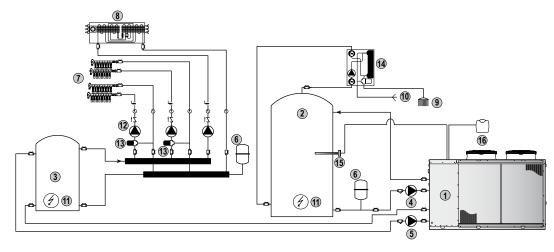
1	Pompe à chaleur	2	Ballon tampon eau chaude sanitaire ECS
3	Ballon tampon utilisateur	4	Vanne 3 voies ON/OFF Chauffage/ECS
5	Pompe de circulation circuit primaire utilisateur	6	Vase d'expansion
7	Eau froide sanitaire	8	Vanne 3 voies
9	Eau chaude sanitaire	11	Résistances électriques d'intégration
12	Pompes de circulation circuit secondaire utilisateur	13	Vannes modulantes chauffage au sol
15	Sonde eau chaude sanitaire	16	Sonde de compensation air externe

La vanne trois voies (4) DOIT avoir un délais d'ouverture maximale de 35 secondes. Une période plus longue peut entraîner un dysfonctionnement du système avec possibles alarmes de haute pression sur la pompe à chaleur.

3.6 Production eau chaude sanitaire (seulement version P4S)

La production d'eau chaude sanitaire moyennant pompe à chaleur est une question délicate qui mérite les adéquates considérations. On est confronté à de nombreux systèmes pour produire eau chaude sanitaire avec une pompe à chaleur, chacun avec ses avantages et désavantages. Ce n'est pas le but de ce manuel d'affronter l'argument et, si nécessaire, on vous prie de contacter le Fabriquant pour des réponses adéquates.

En ligne générale pour ce qui concerne la production d'eau chaude sanitaire:


3.6.1 Solution

Celle-ci est la solution conçue pour les bâtiments neufs, là où la configuration générale de l'installation peut être étudiée en fonction de l'application spécifique.

L'eau chaude sanitaire est produite "instantanément" en utilisant un échangeur de chaleur instantané (préparateur instantané d'eau chaude sanitaire), combiné à un ballon à température constante d'eau technique".

Avec ce système on peut obtenir 3 avantages importants:

- Qualité de l'eau chaude sanitaire. Car l'eau chaude sanitaire n'est pas stocké dans un réservoir, il n'est pas nécessaire de la chauffer à température élevée pour qu'elle soit désinfectée bactériologiquement. L'aintgène de Legionella étant en fait présent seulement en eau dormante.
- Efficacité énergétique: l'"eau technique" à l'intérieur du ballon est maintenue à une température de quelque dégrée plus haute que la température demandée sur l'eau chaude sanitaire et il n'est pas nécessaire augmenter la température du ballon à 63-65°C (température à laquelle l'antigène Legionella est tué) ù. De cette façon on peut entre-autre éviter l'intégration par résistances électriques, ou les employer seulement en cas de dysfonctionnement de la pompe à chaleur ou en conditions ambiantes extrêmes.
- Réduction des phénomènes d'encrassement ayant comme résultat une augmentation de la durée de vie opérationnelle de l'installation. Dans ce cas, l'échangeur de chaleur de l'eau chaude sanitaire doit être relié à un ballon de stockage en circuit fermé. Contacter le Fabriquant pour le correct dimensionnement. Pour connecter le réservoir eau chaude sanitaire E.C.S. il est nécessaire installer tous les composants illustrés dans le dessin ci-dessous. Le ballon E.C.S. est connecté à un échangeur de chaleur (serpentin en cuivre ou échangeur à plaques, selon modèle). La pompe à chaleur doit être reliée au réservoir ECS. Ceci est nécessaire pour garantir le bon fonctionnement de l'unité, évitant les anti-courts cycles. L'entrée et la sortie du ballon ECS sont reliés à l'échangeur de chaleur du préparateur instantané. Ceci assurera un échange thermique direct entre l'"eau technique" stockée dans le ballon ECS et l'eau chaude sanitaire qui passe dans l'échangeur de chaleur. Il est fortement recommandé de contrôler la température de sortie de l'eau chaude sanitaire moyennant une vanne thermostatique.

1	Pompe à chaleur	2	Ballon tampon eau chaude sanitaire ECS
3	Ballon tampon utilisateur	4	Pompe de circulation circuit primaire sanitaire ECS
5	Pompe de circulation circuit primaire utilisateur	6	Vase d'expansion
7	Chauffage radiant au sol	8	Déshumidificateur/Rafraîchissement
9	Eau chaude sanitaire	10	Eau froide sanitaire
11	Résistances électriques d'intégration	12	Pompes de circulation circuit secondaire utilisateur
13	Vannes modulantes chauffage au sol	14	Producteur instantané eau chaude sanitaire
15	Sonde eau chaude sanitaire	16	Sonde de compensation air externe

3.7 Niveaux de capacité du compresseur

Les pompes à chaleur air/eau à haute performance avec compresseur DC Inverter, grâce à l'utilisation de compresseurs et de composantes spécialement conçus pour maintenir des rendements élevés même à des charges réduits et/ou partielles, sont capables de s'étouffer d'un minimum de 16% à un maximum de 100% de la capacité totale de l'unité.

3.8 Facteurs de correction

3.8.1 Facteurs de correction avec glycol

Pourcentage de glycol	Point de givrage (°C)	CCF	IPCF	WFCF	PDCF
10	-3.2	0.985	1	1.02	1.08
20	-7.8	0.98	0.99	1.05	1.12
30	-14.1	0.97	0.98	1.09	1.22
40	-22.3	0.965	0.97	1.14	1.25
50	-33.8	0.955	0.965	1.2	1.33

CCF: Facteur de correction capacité. WFCF: Facteur de correction débit eau.

IPCF: Facteur de correction puissance absorbée. PDCF: Facteur de correction pertes de charge.

Les facteurs de correction du débit eau et des pertes de charge doivent être appliqués aux valeurs obtenus sans glycol. Le facteur de correction du débit eau est calculé de façon à maintenir le même écart qu'on obtiendrait sans glycol. Le facteur de correction des pertes de charge est appliqué à la valeur de débit eau corrigée avec le facteur de correction rélatif.

3.8.2 Facteurs de correction diffèrent \(\Delta t \)

Différence temp. eau (°C)	3	5	8
CCCP	0.99	1	1.02
IPCF	0.99	1	1.01

CCCP = Facteur de correction puissance frigorifique

IPCF = Facteur de correction puissance absorbée

3.8.3 Facteurs de correction par facteur d'encrassement

Facteur d'encrassement	0.00005	0.0001	0.0002		
CCCP	1	0.98	0.94		
IPCF	1	0.98	0.95		

CCCP = Facteur de correction puissance frigorifique

IPCF = Facteur de correction puissance absorbée

3.9 Niveaux sonores

					LHi / SE	/ LS					
				Bande d'o	ctave (Hz)				Lw		Lp
Mod.	63	125	250	500	1K	2K	4K	8K	dB	dB(A)	dB(A)
	dB	dB	dB	dB	dB	dB	dB	dB	uБ	ub(A)	ub(A)
532/SE/LS	40,2	43,6	56,3	71,6	73,9	77,1	73,3	63,1	80,6	81	49
632/SE/LS	40,2	43,6	56,3	71,6	73,9	77,1	73,3	63,1	80,6	81	49
742/SE/LS	52,3	53,6	63,7	74,8	77,4	78,1	76,5	70,5	83,1	83	51
862/SE/LS	52,3	53,6	63,7	74,8	77,4	78,1	76,5	70,5	83,1	83	51
912/SE/LS	52,3	53,6	63,7	74,8	77,4	78,1	76,5	70,5	83,1	83	51
1052/SE/LS	53,3	54,7	64,5	75,7	78,6	79,1	77,5	71,6	84,2	84	52
1222/SE/LS	54,3	55,4	65,9	75,7	79,6	80	78,5	71,4	85,0	85	53
1534/SE/LS	54,3	55,4	65,9	75,7	80,6	80,4	78,5	71,4	85,4	86	54
1654/SE/LS	54,8	56,6	66,1	77,4	80,7	81,8	79,3	72,4	86,3	87	55
854/SE/LS	54,8	56,6	66,1	77,4	80,7	81,8	79,3	72,4	86,3	87	55
1964/SE/LS	54,8	56,6	66,1	77,4	80,7	81,8	79,3	72,4	86,3	87	55
2254/SE/LS	56,2	58,4	68,8	79,1	82,3	84,5	81,3	74,4	88,4	89	57
2554/SE/LS	56,2	58,4	68,8	79,1	82,3	84,5	81,3	74,4	88,4	89	57
					LHi / SE	/ XL					
532/SE/XL	35,2	38,6	51,3	66,6	68,9	72,1	68,3	58,1	75,6	76	44
632/SE/XL	36,2	39,6	52,3	67,6	69,9	73,1	69,3	59,1	76,6	77	45
742/SE/XL	47,3	48,6	58,7	69,8	72,4	73,1	71,5	65,5	78,1	78	46
862/SE/XL	47,3	48,6	58,7	69,8	72,4	73,1	71,5	65,5	78,1	78	46
912/SE/XL	48,3	49,6	59,7	70,8	73,4	74,1	72,5	66,5	79,1	79	47
1052/SE/XL	48,3	49,7	59,5	70,7	73,6	74,1	72,5	66,6	79,2	79	47
1222/SE/XL	49,3	50,4	60,9	70,7	74,6	75	73,5	66,4	80	80	48
1534/SE/XL	48,3	49,4	59,9	69,7	74,6	74,4	72,5	65,4	79,4	80	48
1654/SE/XL	47,8	49,6	59,1	70,4	73,7	74,8	72,3	65,4	79,3	80	48
1854/SE/XL	47,8	49,6	59,1	70,4	73,7	74,8	72,3	65,4	79,3	80	48
1964/SE/XL	49,8	51,6	61,1	72,4	75,7	76,8	74,3	67,4	81,3	82	50
2254/SE/XL	50,2	52,4	62,8	73,1	76,3	78,5	75,3	68,4	82,4	83	51
2554/SE/XL	51,2	53,4	63,8	74,1	77,3	79,5	76,3	69,4	83,4	84	52

Lw: Niveau de puissance sonore calculé selon ISO 3744. Lp: Niveau de pression sonore mesuré en champ libre à 10 mètres de l'unité, facteur de directivité Q=2, selon ISO 3744.

4. INSTALLATION

4.1 Avertissements généraux et utilisation de symboles

Avant d'effectuer toute opération chaque opérateur doit connaître parfaitement le fonctionnement de la machine et de ses commandes, doit avoir lu toutes informations contenues dans le présent manuel.

Toute opération effectuée sur la machine doit être exécutée par du personnel qualifié dans le respect des normes nationales du pays de destination.

L'installation et la maintenance de la machine doivent être exécutées dans le respect de la normative nationale en vigueur.

Ne pas s'approcher et n'insérer aucun objet dans les parties en mouvement.

4.2. Sécurité et santé du personnel

Le lieu de travail de l'opérateur doit être maintenu propre, ordonné et libre de tout objet qui puisse limiter le mouvement. Le lieu de travail doit être illuminé de manière adéquate aux opérations prévues. Une illumination insuffisante ou excessive peut comporter des risques.

S'assurer de toujours garantir une aération optimale du lieu de travail et que les systèmes d'aspiration soient toujours fonctionnels, en parfait état et conformes aux normatives en vigueur.

4.3 Equipement de protection individuelle

Les opérateurs qui effectuent l'installation et la maintenance de la machine se doivent de porter les équipements de protection prévus par la loi et indiqués de suite.

Chaussures de protection.

Protection des yeux.

Gants de protection.

Protection Respiratoire.

Protection de l'ouïe.

4.4 Réception et contrôle du matériel

Lors de l'installation ou lorsque on doit intervenir sur l'unité, il est nécessaire de respecter scrupuleusement les instructions énoncées dans ce manuel, observer les indications sur l'unité et encore appliquer toutes les précautions nécessaires. Le non-respect des normes énoncées peut provoquer des situations dangereuses. À la réception de l'unité vérifier son intégrité: la machine a quitté l'usine en parfait état; d'éventuels dommages doivent être immédiatement contestés au transporteur et enregistrés dans le Bon de Livraison avant de le signer. Le Fabriquant doit être informée, sous 8 jours, sur l'étendue des dommages. Le Client doit remplir un rapport écrit en cas de dégâts importants.

Avant acceptation contrôler:

- Que la machine n'ait pas subi de dégâts durant le transport;
- Que le matériel livré corresponde à ce qui est indiqué sur le bon de livraison.

En cas de dégâts ou anomalies:

- Noter immediatement les dégâts sur le bon de livraison:
- Informer le Fabriquant, sous 8 jours de la réception, sur l'étendue des dommages. Les signalisations audelà de cette limite ne seront pas prises en compte.
- En cas de dommages importants établir un rapport écrit.

4.5 Stockage

Dans le cas où on nécessite de stocker l'unité, la laisser emballée dans un lieu fermé. Si pour une raison quelconque la machine soit déjà déballée suivre les instructions suivantes pour éviter l'endommagement, la corrosion et/où la dégradation:

- Vérifier que toutes les ouvertures soient bien fermées et celées;
- Pour nettoyer l'unité n'utiliser jamais vapeur ou autres détergents qui pourraient l'endommager;
- Retirer et confier au responsable de chantier éventuelles clefs d'accès au tableau de contrôle.

4.5.1 Transport

Le transport doit être réalisé par des transporteurs autorisés et les caractéristiques du moyen utilisé doivent être appropriées pour éviter aucun endommagement de la machine transportée/à transporter dans les phases de chargement/déchargement ou pendant le transport. En cas de routes à parcourir en mauvais état, le moyen doit être équipé par des suspensions ou des partitions internes appropriées pour éviter aucun endommagement de la machine transportée.

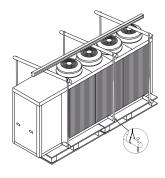
La température ambiante maximale de stockage/transport est de +45 °C, la minimale est de -20 °C.

4.6 Déballage

L'emballage pourrait résulter dangereux pour les opérateurs.

C'est conseillé de laisser les unités emballées durant toute manutention et d'enlever l'emballage seulement au moment de l'installation. L'emballage de l'unité doit être retiré soigneusement pour ne pas endommager l'unité.

L'emballage peut être constitué par des matériaux de nature différente (bois, carton, nylon, etc.).


Les matériaux d'emballage doivent être conservés séparément et remis pour le traitement ou l'éventuel recyclage aux entreprises préposées pour réduire l'impact environmental.

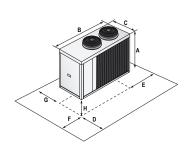
4.7 Levage et manutention

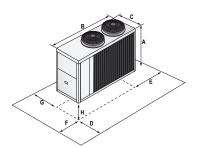
Durant le déchargement et la mise en place de l'unité, il faut avoir soin d'éviter des manoeuvres brusques ou violentes afin de protéger les composants internes. Les unités peuvent être soulevées par le biais d'un chariot élévateur ou, en alternative, avec des sangles, toute en faisant attention de ne pas endommager les panneaux latéraux et supérieurs de l'unité. L'unité doit toujours rester en position horizontale durant ces opérations.

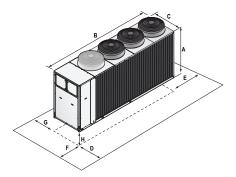
Les ailettes des batteries sont tranchantes. Utiliser des gants de protection.

4.8 Positionnement et espaces techniques minimum

Tous les modèles de la série sont projetés et construits pour installations externes; donc on ne doit pas absolument couvrir par toiture ou placer des plantes ou parois prés de la machine afin d'éviter la recirculation de l'air. C'est une bonne norme la création d'une plaque de support avec adéquates dimensions auxquelles de l'unité. Les unités transmettent au sol un faible niveau de vibrations: cependant il est conseillée l'utilisation de supports antivibratils entre châssis d'embase et le plan d'appui. C'est très important éviter la recirculation entre aspiration et soufflage, peine la dégradation des performances de l'unité ou même interruption du normal fonctionnement. À cet égard c'est nécessaire de garantir les espaces minimum de service indiqués cidessous.


Positionner la machine de façon à garantir l'accès pour maintenance ordinaire et extra-ordinaire.D'éventuels coûts relatifs à plateformes ou moyens de manutention nécessaires pour intervention ne seront pas couverts par la garantie.




Le site d'installation doit être conforme aux normes EN 378 1 et 378 3. Il faut considérer tous les risques survenant d'éventuelles fuites de gaz réfrigérant au moment de l'individuation du site d'installation.

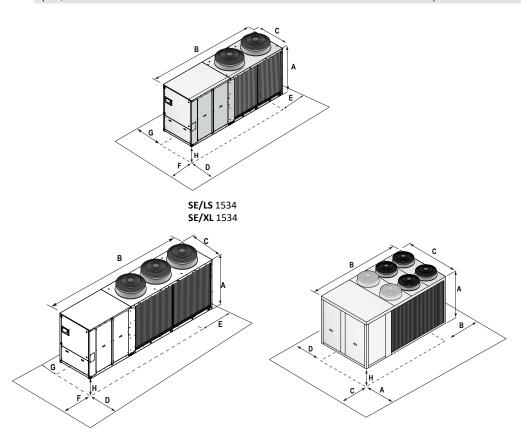
Toute unité en pompe à chaleur air/eau, en phase de dégivrage, génère du condensât à la base de la batterie à ailettes. Dans le cas où la température extérieure soit inférieure à 0°C le condensat peut givrer formant une couche de verglas à côté de l'unité. La couche de verglas, dans certaines conditions, peut entre autres endommager les batteries à ailettes; pour cette raison on recommande de soulever les unités à une hauteur minimale du sol (H) dans le but de garantir le correct fonctionnement. De plus, on recommande de maintenir l'unité soulevée du sol en cas d'installation en zone exposées à chutes de neige.

SE/LS 532 **SE/XL** 532

SE/LS 632 - 742 SE/XL 632

SE/LS 862 - 912 - 1052 - 1222 **SE/XL** 742 - 862 - 912 - 1052 - 1222

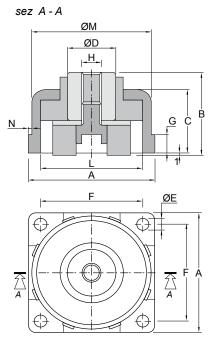
		532	632	742	862	912	1052	1222
A (mm)	SE/LS	1690	1840	1840	1840	1840	1840	1840
B (mm)	SE/LS	2400	2905	2905	3905	3905	3905	3905
C (mm)	SE/LS	1145	1145	1145	1145	1145	1145	1145
D (mm)	SE/LS	1000	2000	2000	2000	2000	2000	2000
E (mm)	SE/LS	800	1000	1000	1000	1000	1000	1000
F (mm)	SE/LS	800	1000	1000	1000	1000	1000	1000
G (mm)	SE/LS	800	1000	1000	1000	1000	1000	1000
H (mm)	SE/LS	350	350	350	350	350	350	350
A (mm)	SE/XL	1690	1840	1840	1840	1840	1840	1840
B (mm)	SE/XL	2400	2905	3905	3905	3905	3905	3905
C (mm)	SE/XL	1145	1145	1145	1145	1145	1145	1145
D (mm)	SE/XL	1000	2000	2000	2000	2000	2000	2000
E (mm)	SE/XL	800	1000	1000	1000	1000	1000	1000
F (mm)	SE/XL	800	1000	1000	1000	1000	1000	1000
G (mm)	SE/XL	800	1000	1000	1000	1000	1000	1000
H (mm)	SE/XL	350	350	350	350	350	350	350


Positionner la machine de façon à garantir l'accès pour maintenance ordinaire et extra-ordinaire. D'éventuels coûts relatifs à plateformes ou moyens de manutention nécessaires pour intervention ne seront pas couverts par la garantie.

Le site d'installation doit être conforme aux normes EN 378 1 et 378 3. Il faut considérer tous les risques survenant d'éventuelles fuites de gaz réfrigérant au moment de l'individuation du site d'installation.

Toute unité en pompe à chaleur air/eau, en phase de dégivrage, génère du condensât à la base de la batterie à ailettes. Dans le cas où la température extérieure soit inférieure à 0°C le condensat peut givrer formant une couche de verglas à côté de l'unité. La couche de verglas, dans certaines conditions, peut entre autres endommager les batteries à ailettes; pour cette raison on recommande de soulever les unités à une hauteur minimale du sol (H) dans le but de garantir le correct fonctionnement. De plus, on recommande de maintenir l'unité soulevée du sol en cas d'installation en zone exposées à chutes de neige.

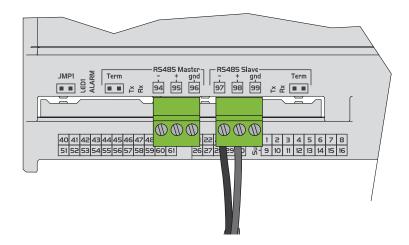
SE/LS 1654 - 1854 - 1964 SE/XL 1654 - 1854 - 1964


SE/LS 2504 - 3004 **SE/XL** 2504 - 3004

		1534	1654	1854	1964	2504	3004
A (mm)	SE/LS	1890	1890	1890	1890	2350	2350
B (mm)	SE/LS	3695	4695	4695	4695	4205	4205
C (mm)	SE/LS	1145	1145	1145	1145	2190	2190
D (mm)	SE/LS	2000	2000	2000	2000	2000	2000
E (mm)	SE/LS	1000	1000	1000	1000	1000	1000
F (mm)	SE/LS	1000	1500	1500	1500	1500	1500
G (mm)	SE/LS	2000	2000	2000	2000	2000	2000
H (mm)	SE/LS	350	350	350	350	350	350
A (mm)	SE/XL	1890	1890	1890	1890	2350	2350
B (mm)	SE/XL	3695	4695	4695	4695	4205	4205
C (mm)	SE/XL	1145	1145	1145	1145	2190	2190
D (mm)	SE/XL	2000	2000	2000	2000	2000	2000
E (mm)	SE/XL	1000	1000	1000	1000	1000	1000
F (mm)	SE/XL	1000	1500	1500	1500	1500	1500
G (mm)	SE/XL	2000	2000	2000	2000	2000	2000
H (mm)	SE/XL	350	350	350	350	350	350

4.9 Installation des pieds caoutchouc anti vibratiles (KAVG)

Toute unité doit être positionnée sur des pieds anti vibratiles pour isoler et réduire au minimum le niveau des vibrations transmises au sol et pour réduire le niveau sonore. Les pieds anti vibratiles en caoutchouc sont disponibles en tant qu'accessoires et sont livrés démontés en boite de carton.


Mod	l	Α	В	С	D	E	F	G	Н	L	M	N
532÷1	222	88 mm	52 mm	41 mm	25 mm	11 mm	67 mm	10 mm	M12	65 mm	74,5 mm	5,5 mm
1534÷2	2554	145 mm	79 mm	65 mm	35 mm	12,5 mm	110 mm	12 mm	M16	118 mm	129 mm	8 mm

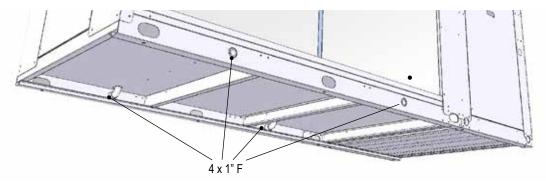
4.10 Carte d'interface RS485 (INSE)

Carte d'interface pour se relier au système de supervision (disponible seulement avec système de supervision MODBUS RS485). L'installation de la carte permettra à l'unité d'être reliée à tout système avec protocole MODBUS RS485. Ce système permet la visualisation déportée de tous les paramètres de fonctionnement de l'unité ainsi que la modification des valeurs. La carte d'interface est généralement

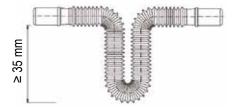
installée en usine, dans le cas où elle soit fournie non installée, il est nécessaire de respecter la polarité des connexions comme illustré dans le schéma. L'éventuelle inversion de la polarité va déterminer le bon fonctionnement de l'unité.

Le câble de connexion de la supervision doit être de type téléphonique 2x0,25 mm². L'unité est configurée en usine avec adresse série 1. Dans le cas de système MODBUS il est possible de demander la liste des variables en contactant le SAV.

4.11 Installation du bac à condensats (BRCA)

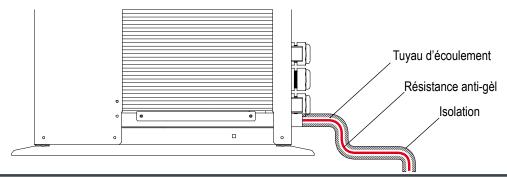


En mode chaud, l'unité peut produire une quantité variable de condensât en fonction des conditions ambiantes et des heures de fonctionnement de l'unité. En version standard le condensât sort de l'unité par un passage dédié qui est laissé libre à la base de l'unité. Ce condensât peut congeler en conditions ambiantes extrêmes. L'unité doit être installée de façon à prévenir situations dangereuses pour l'utilisateur ou pour tierce parts dues à la présence de verglas à proximité de l'unité.


L'installation du bac à condensat sur site pourrait résulter difficultueuse. On conseille de prevoir l'accessoire BRCA lors de la commande de façon à permettre son installation en usine.

De façon à prévenir la dispersion du condensât produit par le refroidisseur réversible, il est possible installer (en option), un bac à condensât qui, positionné en dessous l'échangeur côté source (batterie à ailettes), il sert à la récolte du condensât produit par la machine en mode chaud. Le bac à condensât est équipé d'une résistance électrique antiverglas placée à son intérieur qui fond automatiquement la glace qui pourrait éventuellement se former. Le bac à condensât est équipé avec une connexion d'évacuation qui doit être connecté à un tuyaux d'écoulement.

Sur la ligne d'écoulement il est impératif de réaliser un siphon d'une hauteur suffisant à vaincre l'aspiration des ventilateurs, en tout cas toujours supérieure à 35mm.

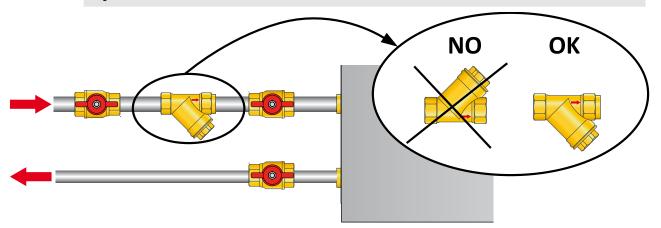

4.11.1 Le câble chauffant

On recommande l'installation d'un câble chauffant dans le tube d'évacuation à condensât dans le but d'éviter le givrage du condensât dans le tuyaux et, en conséquence le mauvais fonctionnement ou la panne de l'unité.

Le câble chauffant doit être inséré dans le tuyaux d'évacuation, on doit utiliser un câble avec niveau de protection IP67 et une puissance thermique d'au moins 35W par mètre linéaire. On recommande entre autre l'isolation du tube d'évacuation avec du matériel à cellules fermées et épaisseur minimum 15mm.

4.12 Connexions hydrauliques

Les connexions hydrauliques doivent être réalisées en conformité aux normes nationales et locales; la tuyauterie doit être réalisée en acier, acier galvanisé, ou PVC. La tuyauterie doit être dimensionnée soigneusement, en accord avec le débit d'eau nominal de l'unité et des pertes de charge du circuit hydraulique. Toutes les liaisons hydrauliques doivent être isolées en utilisant du matériel à cellules fermées d'épaisseur adéquate. L'unité doit être reliée aux tuyaux par le biais de connexions flexibles conçues à cet effet. On recommande d'installer dans le circuit hydraulique les composants suivants:


- Thermomètres à puits pour la détection de la température du circuit.
- Clapets manuels pour isoler le réfrigérateur du circuit hydraulique.
- Filtre métallique (installé sur le tuyaux de reprise) avec maille métallique inférieure à 1 mm.
- · Vannes de purge, vase d'expansion, groupe de chargement et vanne de vidange.

Le tuyaux de retour du système doit être en correspondance de l'étiquette "ACQUA UTENZE IN" en cas contraire l'échangeur pourrait givrer.

Il est obligatoire d'installer un filtre métallique (avec un maillage d'au maximum 1mm) sur le tuyau de retour du circuit avec étiquette "ACQUA UTENZE IN". Si le senseur de débit est manipulé ou déréglé, ou si le filtre métallique n'est pas présent la garantie est nulle. Le filtre doit être bien nettoyé après la mise en service et contrôlé régulièrement.

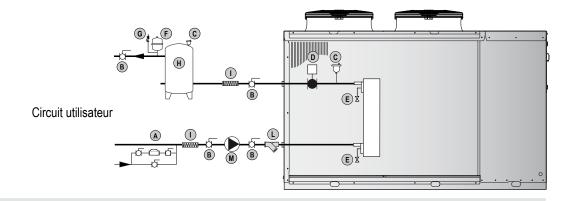
Toutes les unités sont livrées avec un senseur de débit. Ce senseur de débit DOIT ETRE INSTALLE sur la connexion eau externe (étiquetée ACQUA UTENZE OUT); si le senseur de débit est manipulé, enlevé, ou si le filtre à eau n'est pas présent sur l'unité, la garantie est nulle.

Le débit d'eau à travers l'échangeur utilisateur de l'unité ne doit jamais descendre en dessous d'une valeur telle à générer un Δ t de 8°C aux conditions suivantes:

Chauffage: 7°C Température air externe bulbe sec **Refroidissement:** 35°C Température air externe bulbe sec

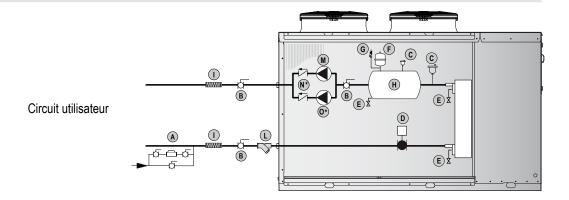
35°C Température sortie eau 7°C Temperatura uscita acqua

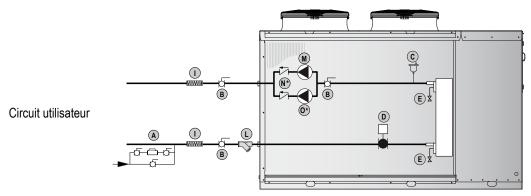
4.13 Caractéristiques chimiques de l'eau


Lors de la première mise en marche, l'unité doit être chargée avec de l'eau propre; qui devrait avoir les caractéristiques suivantes:

PH	6-8	Dureté totale	Inférieur a 50 ppm
Conductivité électrique	Inférieur à 200 mV/cm (25°C)	lons de soufre	Aucun
lon chlore	Inférieur a 50 ppm	lons d'ammoniac	Aucun
Acide sulfurique (ions)	Inférieur a 50 ppm	lons de silicium	Inférieur a 30 ppm
Résidus de fer	Inférieur a 0.3 ppm		

4.14 Composants hydrauliques


4.14.1 Version standard



La pompe de circulation doit être installée avec la pulsion vers le retour eau à l'uunité.

4.14.2 A1ZZU - A2ZZU

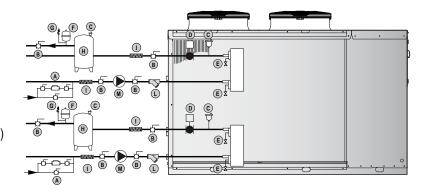
4.14.3 A1NTU - A2NTU

Α	Groupe de remplissage automatique	Н	Ballon tampon utilisateur
В	Vanne d'arrêt à bille	- 1	Flexibles de connexion
С	Vanne de purge	L	Filtre à eau
D	Senseur de débit	M	Pompe de circulation
E	Vanne de drainage réservoir	N*	Vanne de non retour
F	Vase d'expansion	0*	Pompe de circulation
G	Vanne de sécurité		

Légende:

^{* (}disponible pour versions A2NTU - A2NTR - A2ZZU, non disponible pour versions A1NTU - A1NTR - A1ZZU).

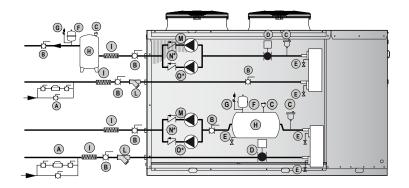
Les composants représentés à l'intérieur des unités sont installés d'usine.


Les composants représentés à l'extérieur des unités doivent être présents sur l'installation pour garantir le correct fonctionnement du système. L'installation de ces composants doit être assurée par le client.

4.14.4 Version P4S Version P4U

Circuit sanitaire (P4S) Circuit recupération (P4U)

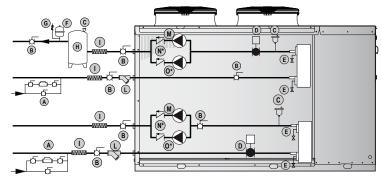
Circuit utilisateur (P4S/P4U)



La pompe de circulation doit être installée avec la pulsion vers le retour eau à l'uunité.

4.14.5 Version P4S + A2NTR + A2ZZU Version P4U + A2NTR + A2ZZU

Circuit sanitaire (P4S) Circuit recupération (P4U)


Circuit utilisateur (P4S/P4U)

4.14.6 Version P4S + A2NTR + A2NTU Version P4U + A2NTR + A2NTU

Circuit sanitaire (P4S) Circuit recupération (P4U)

Circuit utilisateur (P4S/P4U)

Α	Groupe de remplissage automatique	Н	Ballon tampon utilisateur
В	Vanne d'arrêt à bille	- 1	Flexibles de connexion
С	Vanne de purge	L	Filtre à eau
D	Senseur de débit	М	Pompe de circulation
E	Vanne de drainage réservoir	N*	Vanne de non retour
F	Vase d'expansion	0*	Pompe de circulation
G	Vanne de sécurité		

Légende:

^{* (}disponible pour versions A2NTU - A2NTR - A2ZZU, non disponible pour versions A1NTU - A1NTR - A1ZZU).

Les composants représentés à l'intérieur des unités sont installés d'usine.

Les composants représentés à l'extérieur des unités doivent être présents sur l'installation pour garantir le correct fonctionnement du système. L'installation de ces composants doit être assurée par le client.

4.15 Contenu d'eau minimum circuit utilisateur

Les unités en pompe à chaleur nécessitent d'un contenu minimum d'eau à l'intérieur du circuit hydraulique côté utilisateur, dans le but de garantir un bon fonctionnement de l'unité. Une correcte quantité d'eau réduit les anti-courts cycles en prolongeant ainsi la durée de vie de l'unité, entre-autre, un contenu d'eau correct permet une réduction de la température de l'eau chaude limitée durant les cycles de dégivrage. Pour ces raisons il est nécessaire de garantir à l'unité les suivants contenus d'eau dans le circuit utilisateur: Contenu d'eau minimum recommandé: 201 x puissance thermique / nombre de compresseurs.

Modèle	532	632	742	862	912	1052	1222
Contenu d'eau minimum en mode hiver (I)	540	620	750	850	900	1025	1180
Modèle	1534	1654	1854	1964	2254	2554	
Contenu d'eau minimum en mode hiver (I)	650	720	830	940	1120	1350	

4.16 Contenu d'eau minimum circuit ECS

Le contenu d'eau minimum dans le circuit eau chaude sanitaire est reporté dans le tableau ci-dessous

Modèle	532	632	742	862	912	1052	1222
Contenu d'eau minimum circuit ECS (I)	540	620	750	850	900	1025	1180
Modèle	1534	1654	1854	1964	2254	2554	
Contenu d'eau minimum circuit ECS (I)	650	720	830	940	1120	1350	

Le contenu d'eau minimum dans le circuit ECS reporté dans le tableau ci-dessus indique seulement le contenu minimum pour garantir le bon fonctionnement de l'unité en évitant les anti-courts cycles. Les valeurs indiquées ne garantissent pas la disponibilité d'un adéquat débit d'eau chaude sanitaire et la correcte température sur longue période; cette valeur en effet, DOIT être détérminée selon le système employé pour produire l'eau chaude sanitaire et calculée en fonction des exigences de l'installation. On vous prie de contacter le fabriquant pour toute information complémentaire.

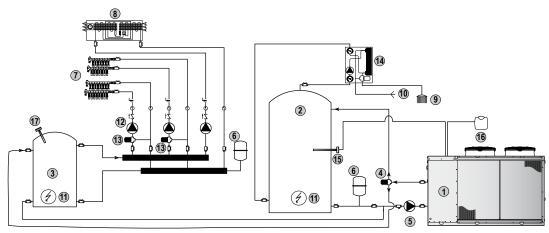
4.17 Remplissage circuit hydraulique

- Avant le remplissage, vérifiez que toutes les vannes de vidange et drainage soient fermées.
- Ouvrez toutes les vannes de l'installation, les vannes de connexion et les vannes de purges.
- Ouvrez toutes les vannes de service.
- Commencez à remplir l'installation en ouvrant lentement les vannes du groupe de remplissage situé à l'extérieur de l'unité.
- Quand l'eau commence à sortir des vannes de purge sur les unités terminales, fermez les et continuez le remplissage jusqu'à ce que le manomètre indique une pression de 1.5 bar.

L'installation doit être remplie à une pression entre 1 et 2 bar. On recommande que cette opération soit répétée après que l'unité a opéré depuis un certain nombre d'heures (en raison de la présence de bulles d'air dans le système). La pression de l'installation devrait être vérifiée régulièrement et si elle tombe en dessous de 1 bar, le contenu d'eau devrait être complété. Vérifiez dans ce cas les joints des jonctions hydrauliques.

4.18 Vidange du circuit hydraulique

- Avant la vidange, positionnez l'interrupteur génerale en position "Off"
- Assurez-vous que la vanne du groupe de remplissage est fermée.
- Ouvrez la vanne de vidange à l'extérieur de l'unité et toutes les vannes de purge de l'unité et des unités terminales.

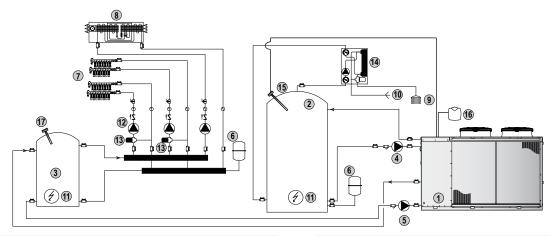


Si le fluide dans le circuit hydraulique contient un additif antigel, il est interdit de le descharger librement car il est polluant. Il doit être récupéré pour une possible réutilisation.

4.19 Installations type

4.19.1 Production Chauffage/Refroidissement/Eau chaude sanitaire - système 2 tubes P2S

1	Pompe à chaleur	2	Ballon eau chaude sanitaire ECS
3	Ballon utlisateur	4	Vanne 3 voies MARCHE/ARRET Chauffage/Production ECS
5	Pompe circuit primaire utilisateur	6	Vase d'expansion
7	Chauffage radiant au sol	8	Déshumidificateur/Refroidissement
9	Distribution eau chaude sanitaire	10	Eau froide sanitaire
11	Résistance électriques d'intégration	12	Pompe circuit secondaire utilisateur
13	Vannes de modulation systèmes de chauffage radiant au sol	14	Préparateur instantané d'eau chaude sanitaire
15	Sonde eau chaude sanitaire	16	Sonde de compensation aire extérieure
17	Sonde circuit utilisateur		


Le système illustré ci-dessus combine le chauffage à basse température avec la production d'eau chaude sanitaire, en utilisant un échangeur de chaleur instantané. L'eau chaude produite par la pompe à chaleur est envoyée au système de chauffage au sol (à basse température p. e. 35°C). L'eau chaude sanitaire est toujours prioritaire; elle est activée par la sonde eau chaude sanitaire (15) qui commande la vanne 3 voies (4) et le point de consigne de l'unité. En refroidissement, si requis, l'unité peut aussi produire de l'eau glacée (en actionnant la vanne d'inversion installée d'usine en toute unité) et, en cas de demande d'eau chaude sanitaire, la production d'eau glacée est interrompue, on actionne la vanne d'inversion en mode eau chaude sanitair eau même temps que la vanne à 3 voies (4), on chauffe le ballon ECS (2) et, quand la température mesurée par la sonde ECS (15) atteint le point de consigne on revient au mode de fonctionnement refroidissement. Toute unité est fournie avec sonde de compensation climatique (16) qui permet l'ajustement du point de consigne de l'eau utilisateur en mode chauffage, pour répondre aux variations des conditions ambiantes.

Les composants fournis sont

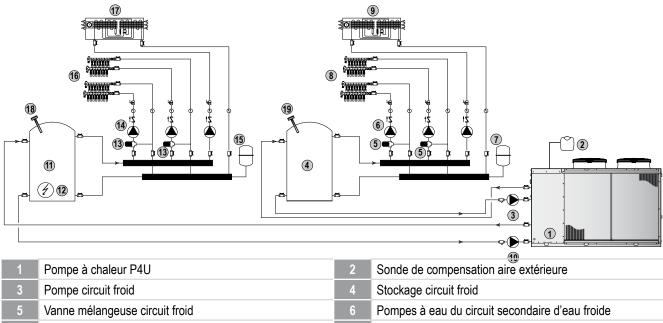
	STANDARD		OPTION		NON DISPONIBLE
1	Pompe à chaleur	2	Ballon eau chaude sanitaire ECS	4	Vanne 3 voies MARCHE/ARRET Chauffage/Production ECS
15	Sonde eau chaude sanitaire	3	Ballon utlisateur	6	Vase d'expansion
16	Sonde de compensation aire extérieure	5	Pompe circuit primaire utilisateur	7	systèmes de chauffage radiant au sol
17	Sonde circuit utilisateur	8	Déshumidificateur/Refroidissement	9	Distribution eau chaude sanitaire
		11	Résistance électriques d'intégration	10	Eau froide sanitaire
		14	Préparateur instantané d'eau chaude sanitaire	12	Pompe circuit secondaire utilisateur
				13	Vannes de modulation systèmes de chauffage radiant au sol

4.19.1 Production Chauffage / Refroidissement / Eau chaude sanitaire - système 4 tubes P4S

1	Pompe à chaleur P4S	2	Ballon eau chaude sanitaire ECS
3	Ballon utlisateur	4	Pompe circuit primaire sanitaire
5	Pompe circuit primaire utilisateur	6	Vase d'expansion
7	Chauffage radiant au sol	8	Déshumidificateur/Refroidissement
9	Distribution eau chaude sanitaire	10	Eau froide sanitaire
11	Résistance électriques d'intégration	12	Pompe circuit secondaire utilisateur
13	Vannes de modulation systèmes de chauffage radiant au sol	14	Préparateur instantané d'eau chaude sanitaire
15	Sonde eau chaude sanitaire	16	Sonde de compensation aire extérieure
17	Sonde circuit utilisateur		

Ce système permet la production d'eau chaude pour le chauffage, eau chaude sanitaire et eau froide en utilisant un système à 4 tubes. L'unité P4S présente 4 connexions côté eau: 2 connexions relatives au circuit eau chaude sanitaire ECS; 2 connexions relatives au système chauffage/refroidissement. La production d'eau chaude sanitaire a toujours la priorité et l'activation est faite par la sonde ECS (15) qui actionne la pompe de circulation du circuit primaire ECS (4).

En mode hiver l'activation de la pompe ECS (4) arrête momentanément l'eau chaude du côté chauffage au plancher qui est normalement remis en marche quand le réservoir eau chaude sanitaire atteint le point de consigne (mesuré par la sonde eau chaude sanitaire 15). En mode été l'unité P4S va commuter en refroidissement (par l'activation de la vanne d'inversion de cycle installée à bord) et une éventuelle demande d'eau chaude sanitaire permet la production contemporaine d'eau froide.


L'installation, en ce mode de travail, peut produire simultanément eau froide et eau chaude sanitaire. L'eau chaude sanitaire, en mode été, est produite moyennant une récupération de chaleur, donc EN MODE GRATUIT. Quand la température mesurée par la sonde ECS (15) atteint le point de consigne, la pompe (4) s'arrête et l'unité reprend le mode de fonctionnement normal en refroidissement.

Les composants fournis sont:

	STANDARD		OPTION		NON DISPONIBLE
1	Pompe à chaleur P4S	2	Ballon eau chaude sanitaire ECS	6	Vase d'expansion
15	Sonde eau chaude sanitaire	3	Ballon utlisateur	7	Systèmes de chauffage radiant au sol
16	Sonde de compensation aire extérieure	4	Pompe circuit primaire sanitaire	9	Distribution eau chaude sanitaire
17	Sonde circuit utilisateur	5	Pompe circuit primaire utilisateur	10	Eau froide sanitaire
		8	Déshumidificateur/Refroidissement	12	Pompe circuit secondaire utilisateur
		11	Résistance électriques d'intégration	13	Vannes de modulation systèmes de chauffage radiant au sol
		14	Préparateur instantané d'eau chaude sanitaire		

4.19.2 Production Chauffage / Refroidissement - système 4 tubes P4U

1	Pompe a chaleur P4U	2	Sonde de compensation aire exterieure
3	Pompe circuit froid	4	Stockage circuit froid
5	Vanne mélangeuse circuit froid	6	Pompes à eau du circuit secondaire d'eau froide
7	Vase d'expansion circuit froid	8	Pressostats circuit froid
9	Circuit froid utilisateur	10	Pompe circuit chaud
11	Stockage circuit chaud	12	Appoint électrique circuit chaud
13	Vanne mélangeuse circuit chaud	14	Pompes à eau du circuit secondaire d'eau chaude
15	Vase d'expansion circuit chaud	16	Pressostats circuit chaud
17	Eau chaude circuit utilisateur	18	Sonde circuit chaud
19	Sonde circuit froid		

Ce système permet la production simultanée d'eau froide et d'eau chaude en utilisant 4 connexions hydrauliques. 2 connexions pour le circuit eau chaude, 2 connexions pour le circuit eau froide. ces unités sont utilisées dans les modernes installations à 4 tubes. Dans ces installations, l'eau froide et l'eau chaude sont toujours disponibles (toute saison) et présentes dans le circuit hydraulique dédié. L'installation ci-conçue peut chauffer certains locaux et, en même temps, si nécessaire, en refroidir d'autres avec des efficacités énergétiques très élevées. Dans cette configuration les unités sont aussi capables de produire eau chaude ou froide indépendamment en toute saison. Cette version ne produit pas d'eau chaude sanitaire.

Les composants fournis sont:

	- F				
	STANDARD		OPTION		NON DISPONIBLE
1	Pompe à chaleur P4S	3	Pompe circuit froid	5	Vanne mélangeuse circuit froid
2	Sonde eau chaude sanitaire	4	Stockage circuit froid	6	Pompes à eau du circuit secondaire d'eau froide
18	Sonde de compensation aire extérieure	10	Pompe circuit chaud	7	Vase d'expansion circuit froid
19	Sonde circuit utilisateur	11	Stockage circuit chaud	8	Pressostats circuit froid
		12	Appoint électrique circuit chaud	9	Circuit froid utilisateur
				13	Vanne mélangeuse circuit chaud
				14	Pompes à eau du circuit secondaire d'eau chaude
				15	Vase d'expansion circuit chaud
				16	Pressostats circuit chaud
				17	Eau chaude circuit utilisateur

4.20 Raccordements électriques: informations préliminaires de sécurité

Le tableau de connexion électrique est placé à l'intérieur de l'unité au sommet du compartiment technique où les différents composants du circuit réfrigérant sont aussi situés. Pour accéder au tableau il faut retirer le panneau frontal de l'unité:

Les connexions électriques doivent être effectuées en conformité au schéma électrique joint à l'unité et des normes de montage locales et internationales en vigueur.

S'assurer que la ligne d'alimentation électrique de l'unité soit séctionné à mont de la même. S'assurer que le sectionneur soit sous clef ou que sur la poignée d'actionnement soit appliqué le panneau correspondant d'avertissement à ne pas opérer.

Il est impératif de vérifier que les tensions d'alimentation correspondent à celles indiquées sur l'étiquette placée sur le panneau frontal de la machine.

Les câbles d'alimentation doivent être protégés à mont contre les effets de court-circuit et de surcharge par un dispositif conforme aux normes en vigueur.

La section des câbles doit être conforme au sistème de protectionet doit tenir compte de tous les facteurs qui peuvent interferer (température, type d'isolation, longueur, etc.).

L'alimentation électrique doit être dans les limites de tension définies: dans le cas d'une non observation de ces conditions, la garantie est nulle.

Le senseur de débit doit être installé et raccordé électriquement en tenant compte des instructions dans le schéma électrique. Ne jamais ponter ou modifier la connexion de ces senseurs sous peine d'invalider immédiatement la garantie sur la machine.

Effectuer toutes les liaison à la terre prevues par les normes en vigueur.

Avant de démarrer toute opération s'assurer que l'alimentationélectrique soit déconnecté.

La ligne d'alimentation et les dispositifs de sécurité hors machine doivent être dimensionnés pour être en mesure de garantir une correcte tension d'alimentation aux conditions maximales de fonctionnement indiquées dans le manuel technique.

PROTECTION CONTRE LE GEL:

Si le contacteur principal est déclenché toutes les composantes de chauffage électrique et de mise hors gel sont inactives dans l'unité ouverte. Le contacteur central ne devra être déclenché que lors du nettoyage, de l'entretien ou la réparation de d'unité.

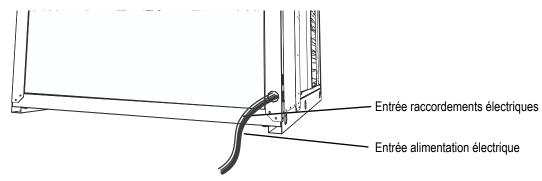
4.21 Données électriques

Les données électriques indiquées de suite sont à considérer pour unité standard sans accéssoires. Dans tous les autres cas se rapporter aux données électriques indiquées dans le schéma électrique joint.

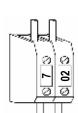
La tension d'alimentation ne doit pas subir des variations majéures de ± 10% de la valeur nominale et le désequilibrage entre les phases doit être inférieur de 1% selon la norme EN 60204. Si ces tolérances ne peuvent pas être respectées on vous prie de contacter notre bureau technique.

Modèle		532	632	742	862	912	1052	1222
Alimentation	V/~/Hz	400/3+N/50	400/3+N/50	400/3+N/50	400/3/50	400/3/50	400/3/50	400/3/50
Unité de contrôle	V/~/Hz	24 V	24 V	24 V	24 V	24 V	24 V	24 V
Circuit auxiliaire	V/~/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Aliment. des ventilateurs	V/~/Hz	230/1/50	230/1/50	230/1/50	400/3/50	400/3/50	400/3/50	400/3/50
Section des câbles	mm²	16	35	35	50	50	70	70
Section PE	mm²	10	25	25	25	25	35	35

Modèle		1534	1654	1854	1964	2254	2554
Alimentation	V/~/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Unité de contrôle	V/~/Hz	24 V					
Circuit auxiliaire	V/~/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Aliment. des ventilateurs	V/~/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Section des câbles	mm^2	70	95	120	150	150	240
Section PE	mm²	35	50	70	70	70	120



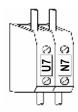
Les données électriques peuvent changer pour des améliorations sans autres notices II est donc impératif de prendre en compte les schema de câblage livrés avec la machine.


4.22 Raccordements électriques

4.22.1 Raccordements d'alimentation et raccordements électriques

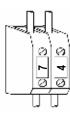
4.22.2 Raccordements électriques déportés (obligatoires)

Toutes les bornes de connexion mentionnées ici sont présentes à l'intérieur de la machine dans le tableau électrique. Toutes les connexions électriques mentionnées ci dessous sont à éxecuter sur site d'installation par un installateur agrée.



SONDE EAU DE REPRISE CIRCUIT UTILISATEUR (BTI)

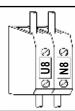
Elle est utilisée pour mesurer la température de l'eau de retour du circuit utilisateur. La sonde est toujours fournie séparément dans une boîte en plastique.


En mode standard, la pompe à eau circuit utilisateur est mise à l'arrêt durant les périodes de veille (compresseur à l'arrêt). La sonde doit être placée en position adéquate pour pouvoir mesurer la température du circuit secondaire. Un positionnement incorrect de la sonde à eau circuit utilisateur peut entraîner un dysfonctionnement de la pompe à chaleur. La sonde déportée est fournie en vrac à l'intérieur de l'unité (positionnée à l'intérieur du tableau électrique) équipée d'un câble électrique de 6 metres.

Au cas où la longueur du câble ne soit pas suffisante on peut le rallonger en utilisant un câble de section 0,5mm2 jusqu'à une distance maximale de 50 mètres.

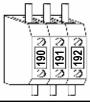
POMPE A EAU CIRCUIT UTILISATEUR

Avec absorption de courant maximum 3A. En configuration standard, le contrôle à microprocesseur de l'unité met à l'arrêt la pompe à eau circuit utilisateur lorsque vous atteignez le point de consigne. Cette solution permet une réduction importante de l'énergie consommée quand le point de consigne est atteint ou l'unité est en veille. Si l'unité est équipée d'usine avec la pompe à eau circuit utilisateur (version A) le connexions ci-dessus sont déjà présentes.


SONDE EAU DE REPRISE CIRCUIT EAU CHAUDE SANITAIRE (BTS)

La sonde doit être positionnée dans l'orifice présent dans le réservoir ECS (eau chaude sanitaire), en position adéquate pour pouvoir mesurer la correcte température de l'eau chaude sanitaire. Un positionnement incorrect de la sonde eau chaude sanitaire peut entraîner un dysfonctionnement de la pompe à chaleur. La sonde est fournie en vrac à l'intérieur de l'unité (positionnée à l'intérieur du tableau électrique) équipée d'un câble électrique de 3 metres. Au cas où la longueur du câble ne soit pas suffisante on peut le rallonger en utilisant un câble de section 0,5mm2 jusqu'à une distance maximale de 50 mètres.

La numération des bornes peut changer sans préavis. Pour les liaison il est donc nécéssaire se référrer TOU-JOURS au schéma électrique livré avec l'unité.



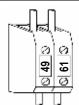
POMPE A EAU CHAUDE SANITAIRE

Avec absorption de courant maximum 1A. En configuration standard, le contrôle à microprocesseur de l'unité met à l'arrêt la pompe eau chaude sanitaire lorsque vous atteignez le point de consigne.

Cette solution permet une réduction importante de l'énergie consommée quand le point de consigne est atteint ou l'unité est en veille.

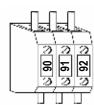
4.22.3 Liaisons électriques déportées (optionnelles)

VANNE 3 VOIES ON/OFF (Nécessaire seulement en version à 2 tubes P2S; non nécessaire pour les versions à 4 tubes P4)


Sur les version à 2 tubes la vanne 3 voies permet de produire eau chaude sanitaire; la vanne est activée par la sonde eau chaude sanitaire (BTS), et dévie l'eau chaude soit dans le réservoir ECS soit dans le circuit utilisateur. La vanne doit être reliée aux bornes 191/193/192

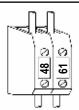
ON/OFF DEPORTE

Pour utiliser un dispositif de ON/OFF déporté, le pontage doit être remplacé par un interrupteur relié aux bornes 1 et 2.

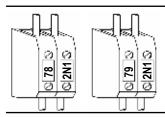

Contact fermé: unité ON Contact ouvert: unité OFF

COMMUTATION DEPORTEE ETE/HIVER

Pour utiliser un dispositif déporté de commutation été/hiver, le pontage doit être remplacé par un interrupteur relié aux bornes 50 et 49


Contact fermé: unité en mode HIVER Contact ouvert: unité en mode ETE

ALARME GENERAL DEPORTE

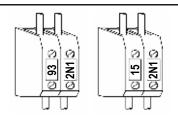

Pour la signalisation déportée d'une alarme générale, relier un dispositif visuel et/ou auditif aux bornes 90-91-92.

Contacts 90/91 NC (Normalement fermés) Contacts 91/92 NC (Normalement ouverts)

RESISTENCES ELECTRIQUES INTEGRATIVES CIRCUIT UTILISATEUR

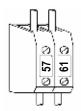
Si on nécessite de résistences électriques circuit utilisateur, il faut les connecter aux bornes.

RESISTENCES ELECTRIQUES INTEGRATIVES CIRCUIT ECS


Si on nécessite de résistences électriques circuit eau chaude sanitaire.

(78-2N1) MOD. 532 - 1252 (79-2N1) MOD. 1534 - 2554

La numération des bornes peut changer sans préavis. Pour les liaison il est donc nécéssaire se référrer TOU-JOURS au schéma électrique livré avec l'unité.

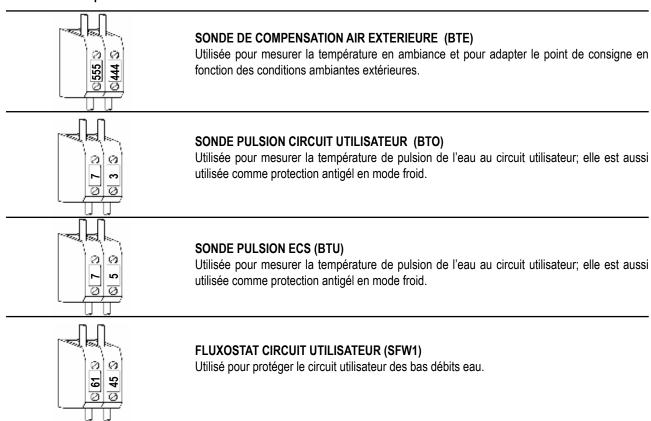


RESISTANCES ELECTRIQUE INTEGRATIVES CIRCUIT EAU CHAUDE SANITAIRE

Si des résistances électriques supplémentaires sont nécessaires pour le circuit d'eau chaude sanitaire.

(98-2N1) MOD. 532 - 1252 (15-2N1) MOD. 1534 - 2554

PRIORITY SELECTOR (Eau Chaude) (Seulement P2S, P2U)


Pour utiliser un sélecteur, un appareil avec contact de tension libre (interrupteur) doit être connecté aux bornes. Le sélecteur fonctionne comme suit :

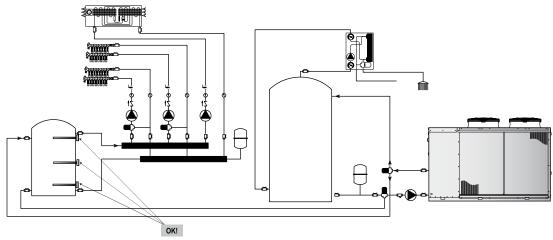
Contact fermé: Seulement eau chaude sanitaire;

Contact ouverte: Eau chaude sanitaire/ Chauffage (et/ou refroidissement);

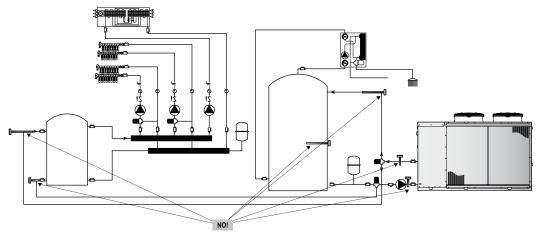
L'unité est fournie de l'usine avec des bornes sans aucun

4.22.4 Liaison électriques d'usine

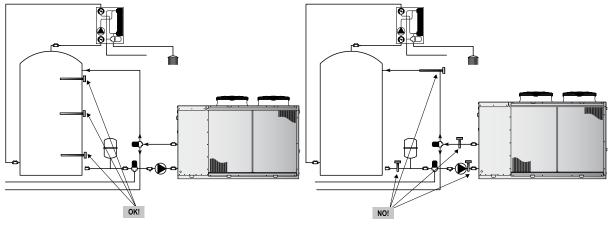
La numération des bornes peut changer sans préavis. Pour les liaison il est donc nécéssaire se référrer TOU-JOURS au schéma électrique livré avec l'unité.


4.23 Positionnement de la sonde de reprise circuit utilisateur (BTI)

Le bon positionnement de la sonde utilisateur est extrémement important pour garantir le bon fonctionnement de la pompe à chaleur. La sonde utilisateur est utilisée pour demarrer et eteindre l'unité quand la température eau utilisateur atteint le point de consigne.



Pour garantir un correct relevé de la température insérer la sonde dans le doigt de gant dédié dans le ballon tampon.


Positionnement correct de la sonde

Positionnement incorrect de la sonde

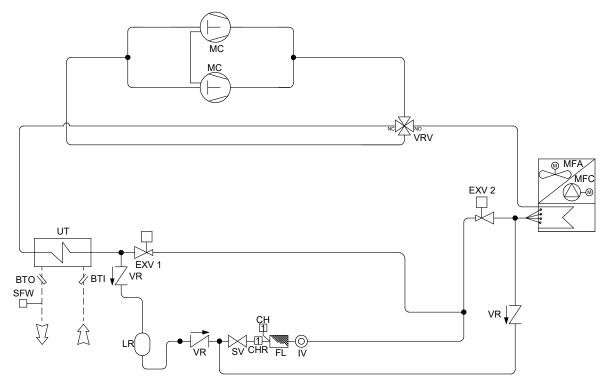
4.24 Positionnement sonde circuit ECS (BTS)

Positionnement correct de la sonde

Positionnement incorrect de la sonde

4.25 Schémas frigorifiques de principe

4.25.1 Schéma circuit frigorifique version P2U - P2S - monobatterie


Version P2U

Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver et eau froide en été. L'unité doit être combinée à une installation à 2 tubes. Elle ne peut pas produire eau chaude sanitaire.

Version P2S

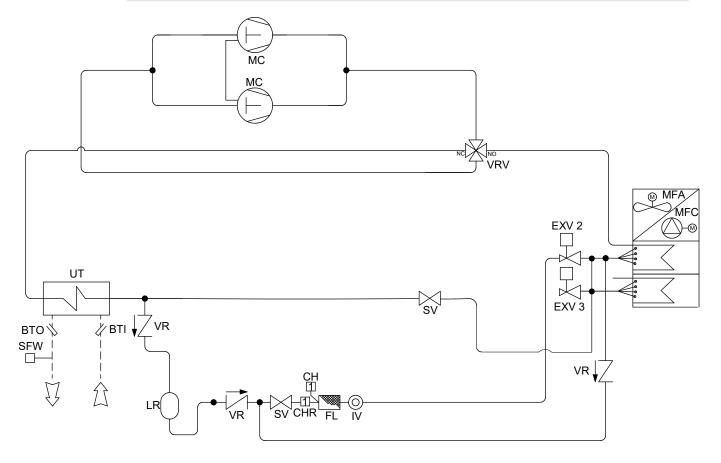
Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver, eau froide en été et eau chaude sanitaire durant toute l'année. L'unité doit être combinée à une installation à 2 tubes et reliée à une vanne 3 voies externe (non fournie) pour la production d'eau chaude sanitaire en priorité.

Le diagramme de réfrigération est en principe purement indicatif.

Les modèles 1534 - 1654 - 1854 - 1964 - 2254 - 2554 en toute version et configuration, ont deux circuits indépendants comme celui illustré ci-dessus.

BTI	Sonde entrée eau utilisateur	MFC	Ventilateur centrifuge
BTO	Sonde sortie eau utilisateur	SFW	Senseur de débit eau
CH	Vanne de charge	SO	Échangeur
CHR	Vanne de charge	SV	Vanne d'isolement manuelle
ECO	Économiseur	UT	Échangeur utilisateur
EXV	Détendeur 1,2,3,4	VR	Clapet antiretour
FL	Filtre ligne liquide	VRV	Vanne inversion de cycle
IV	Indicateur de liquide	YEC	Vanne solénoïde by-pass
LR	Réservoir liquide	_	Liaisons frigorifiques
MC	Compresseur		Liaisons hydrauliques
MFA	Ventilateur source		

4.25.4 Schéma circuit frigorifique version P2U - P2S - batterie double


Version P2U

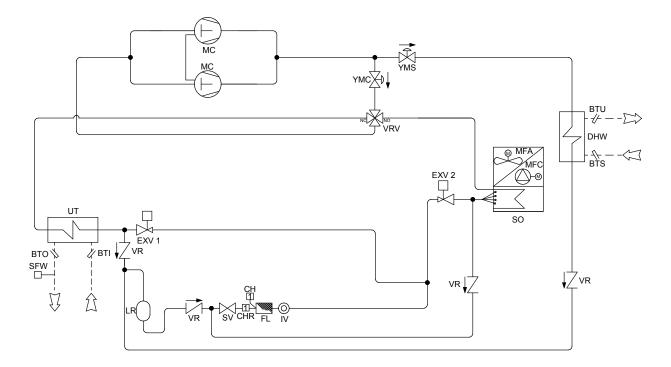
Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver et eau froide en été. L'unité doit être combinée à une installation à 2 tubes. Elle ne peut pas produire eau chaude sanitaire.

Version P2S

Cette version utilise 2 connexions hydrauliques et peut produire eau chaude en hiver, eau froide en été et eau chaude sanitaire durant toute l'année. L'unité doit être combinée à une installation à 2 tubes et reliée à une vanne 3 voies externe (non fournie) pour la production d'eau chaude sanitaire en priorité.

Le diagramme de réfrigération est en principe purement indicatif.

BTI	Sonde entrée eau utilisateur	MFC	Ventilateur centrifuge
ВТО	Sonde sortie eau utilisateur	SFW	Senseur de débit eau
CH	Vanne de charge	SO	Échangeur
CHR	Vanne de charge	SV	Vanne
ECO	Économiseur	UT	Échangeur utilisateur
EXV	Détendeur 1,2,3,4	VR	Clapet antiretour
FL	Filtre ligne liquide	VRV	Vanne inversion de cycle
IV	Indicateur de liquide	YEC	Vanne solénoïde by-pass
LR	Réservoir liquide	_	Liaisons frigorifiques
MC	Compresseur		Liaisons frigorifiques
MFA	Ventilateur axial		



4.25.1 Schéma circuit frigorifique version P4S - monobatterie

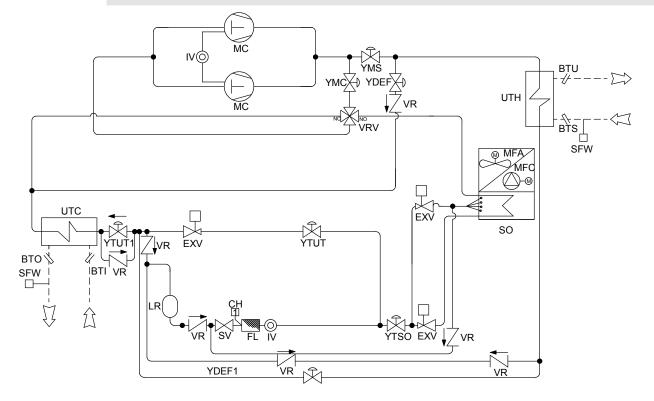
Version P4S

Cette version utilise 4 connexions hydrauliques et peut produire eau chaude en hiver, eau froide en été et eau chaude sanitaire durant toute l'année sur un circuit hydraulique indépendant. L'unité doit être combinée à une installation à 4 tubes où 2 tubes sont dédiés au circuit utilisateur et 2 tubes sont dédiés au circuit sanitaire. Durant l'hiver, avec ECS en demande, on bloque temporairement le débit d'eau vers le circuit utilisateur. Durant l'été l'ECS peut être produite simultanément à l'eau glacée. L'ECS est disponible même quand le circuit utilisateur est en veille ou le point de consigne utilisateur est atteint. Le microprocesseur donne toujours priorité à l'ECS

Le diagramme de réfrigération est en principe purement indicatif.

Les modèles 1534 - 1654 - 1854 - 1964 - 2254 - 2554 en toute version et configuration, ont deux circuits indépendants comme celui illustré ci-dessus.

BTI	Sonde entrée eau utilisateur	MFA	Ventilateur axial
вто	Sonde sortie eau utilisateur	MFC	Ventilateur centrifuge
BTS	Sonde entrée eau chaude sanitaire	SFW	Senseur de débit eau
BTU	Sonde sortie eau chaude sanitaire	SO	Échangeur
СН	Vanne de charge	SV	Vanne
CHR	Vanne de charge	UT	Échangeur utilisateur
DHW	Échangeur eau chaude sanitaire	VR	Clapet antiretour
ECO	Économiseur	VRV	Vanne inversion de cycle
EXV	Détendeur 1,2,3,4	YEC	Vanne solénoïde by-pass
FL	Filtre ligne liquide	YMC	Vanne solénoïde économiseur
IV	Indicateur de liquide	YMS	Vanne solénoïde refroidisseur
LR	Réservoir liquide	_	Liaisons frigorifiques
MC	Compresseur		Liaisons hydrauliques



4.25.2 Schéma circuit frigorifique version P4U - monobatterie

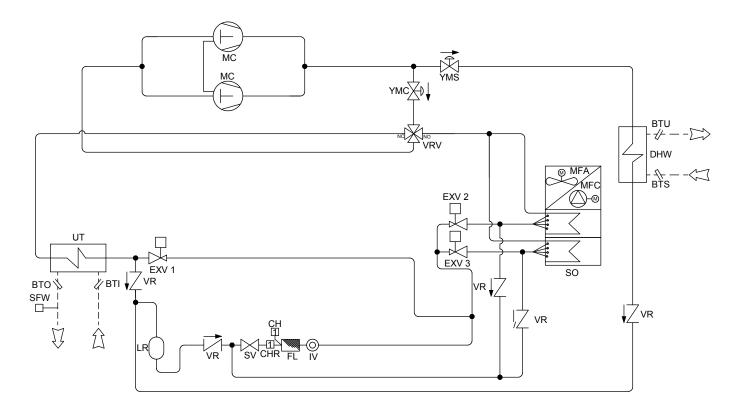
Version P4U

Cette version utilise 4 connexions hydrauliques et est dédiée aux modernes installations à 4 tubes. Dans ces installations, l'eau glacée et chaude est toujours disponible (tout au long de l'année) et présente dans les circuit hydraulique spécifique. L'installation ci-conçue peut chauffer certaines zones et, en même temps, si nécessaire, en refroidir d'autres avec une efficacité énergétique très élevée. En cette version les unités peuvent aussi produire séparément eau chaude et eau froide durant toute l'année. Cette version ne peut pas produire d'eau chaude sanitaire.

Le diagramme de réfrigération est en principe purement indicatif.

Les modèles 1534 - 1654 - 1854 - 1964 - 2254 - 2554 en toute version et configuration, ont deux circuits indépendants comme celui illustré ci-dessus.

BTI	Sonde entrée eau glacée	SO	Échangeur source
ВТО	Sonde sortie eau glacée	SV	Vanne
BTS	Sonde entrée eau chaude	UTC	Échangeur circuit eau glacée
BTU	Sonde sortie eau chaude	UTH	Échangeur circuit eau chaude
CH	Vanne de charge 1/4 SAE	VR	Clapet antiretour
ECO	Économiseur	VRV	Vanne inversion de cycle
EXV	Détendeur 1,2,3,4	YDEF	Vanne solénoïde
FL	Filtre ligne liquide	YDEF1	Vanne solénoïde
IV	Indicateur de liquide	YEC	Vanne solénoïde by-pass
LR	Réservoir liquide	YMC	Vanne solénoïde Économiseur
MC	Compresseur	YMS	Vanne solénoïde
MFA	Ventilateur axial	YTSO	Vanne solénoïde
MFC	Ventilateur centrifuge	YTUT	Vanne solénoïde
REC	Résistance échangeurs	_	Liaisons frigorifiques
SFW	Senseur de débit eau		Liaisons frigorifiques



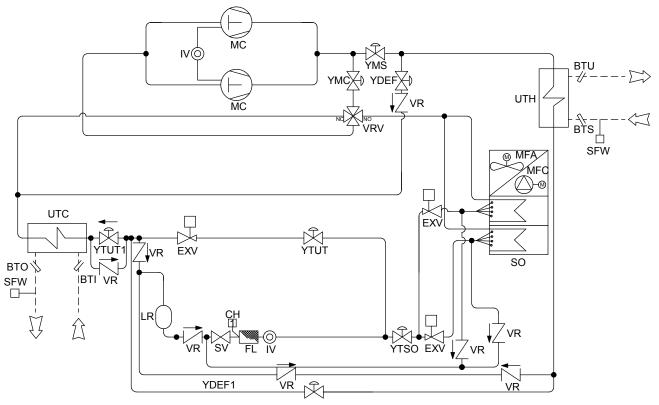
4.25.3 Schéma circuit frigorifique versione P4S - batterie double

Version P4S

Cette version utilise 4 connexions hydrauliques et peut produire eau chaude en hiver, eau froide en été et eau chaude sanitaire durant toute l'année sur un circuit hydraulique indépendant. L'unité doit être combinée à une installation à 4 tubes où 2 tubes sont dédiés au circuit utilisateur et 2 tubes sont dédiés au circuit sanitaire. Durant l'hiver, avec ECS en demande, on bloque temporairement le débit d'eau vers le circuit utilisateur. Durant l'été l'ECS peut être produite simultanément à l'eau glacée. L'ECS est disponible même quand le circuit utilisateur est en veille ou le point de consigne utilisateur est atteint. Le microprocesseur donne toujours priorité à l'ECS

Le diagramme de réfrigération est en principe purement indicatif.

BTI	Sonde entrée eau utilisateur	MFA	Ventilateur axial
вто	Sonde sortie eau utilisateur	MFC	Ventilateur centrifuge
BTS	Sonde entrée eau chaude sanitaire	SFW	Senseur de débit eau
BTU	Sonde sortie eau chaude sanitaire	SO	Échangeur
CH	Vanne de charge	SV	Vanne
CHR	Vanne de charge	UT	Échangeur utilisateur
DHW	Échangeur eau chaude sanitaire	VR	Clapet antiretour
ECO	Économiseur	VRV	Vanne inversion de cycle
EXV	Détendeur 1,2,3,4	YEC	Vanne solénoïde by-pass
FL	Filtre ligne liquide	YMC	Vanne solénoïde Économiseur
IV	Indicateur de liquide	YMS	Vanne solénoïde
LR	Réservoir liquide	_	Liaisons frigorifiques
MC	Compresseur		Liaisons frigorifiques



4.25.4 Schéma circuit frigorifique version P4U - batterie double

Version P4U

Cette version utilise 4 connexions hydrauliques et est dédiée aux modernes installations à 4 tubes. Dans ces installations, l'eau glacée et chaude est toujours disponible (tout au long de l'année) et présente dans les circuit hydraulique spécifique. L'installation ci-conçue peut chauffer certaines zones et, en même temps, si nécessaire, en refroidir d'autres avec une efficacité énergétique très élevée. En cette version les unités peuvent aussi produire séparément eau chaude et eau froide durant toute l'année. Cette version ne peut pas produire d'eau chaude sanitaire.

Le diagramme de réfrigération est en principe purement indicatif.

BTI	Sonde entrée eau utilisateur	SO	Échangeur source
ВТО	Sonde sortie eau utilisateur	SV	Vanne
BTS	Sonde entrée eau chaude sanitaire	UTC	Échangeur circuit eau glacée
BTU	Sonde sortie eau chaude sanitaire	UTH	Échangeur circuit eau chaude
CH	Vanne de charge	VR	Clapet antiretour
ECO	Économiseur	VRV	Vanne inversion de cycle
EXV	Détendeur 1,2,3,4	YDEF	Vanne solénoïde
FL	Filtre ligne liquide	YDEF1	Vanne solénoïde
IV	Indicateur de liquide	YEC	Vanne solénoïde by-pass
LR	Réservoir liquide	YMC	Vanne solénoïde Économiseur
MC	Compresseur	YMS	Vanne solénoïde
MFA	Ventilateur axial	YTSO	Vanne solénoïde
MFC	Ventilateur centrifuge	YTUT	Vanne solénoïde
REC	Résistance échangeurs	_	Liaisons frigorifiques
SFW	Senseur de débit eau		Liaisons frigorifiques

5. MISE EN SERVICE

5.1 Contrôles préliminaires

Avant de procéder à la mise en service de l'unité il est nécéssaire éffectuer les contrôles préliminaires de la partie électrique, hydraulique et frigorifique.

Les opérations dee mise en service doivent être éxécutées en conformité aux instructions des paragraphes précedants.

Jamais éteindre l'unité (pour arrêt temporaine), en actionnant l'intérrupteur principal: ce dispositif est à utiliser seulement pour déconnecter l'unité de l'alimentation en absence de passage de courant, par example quand l'unité est à l'arrêt. De plus, en absence d'alimentation, les résistences carter ne sont pas alimentées, avec conseguent danger de dommage aux compresseurs au démarrage de l'unité.

5.1.1 Avant la mise en marche

Malfonctionnements ou dégats peuvent aussi être conséquence de manque de soin durant le transport et l'installation. Avant l'installation ou la mise en marche vérifier l'absence de pertes de réfrigérant causées par l'endommagement de capilllaires, connéxions des préssostats, tuyaux du circuit frigorifique du à manomission, vibrations durant le transport, mauvaise manipulation sur chantier.

- Vérifier que l'unité soit installé à règle d'art et en conformité aux indications de ce manuel.
- Vérifier les connéxions électriques et le correcct serrage de toutes les bornes.
- Vérifier que la tension des phases R S T soit celle indiquée sur la plaquette identificative de l'unité.
- Vérifier que l'unité soit réliée à la terre.
- Vérifier l'absence de fuites de fréon, éventuellement à l'aide d'un déteccteur de fuite.
- Vérifier l'absence de taches d'huile qui peuvent indiquer une fuite.
- Vérifier que le circuit frigorifique soit en pression: utiliser lles manomètres sur l'unité, si presents, ou des manomètres de service.
- Vérifier que toute les prises de service soient fermées avec les bouchons prévus à cet effet.
- Vérifier que les résitances électriques (si présentes) soient alimentées corréctement.
- Vérifier que les liaisons hydrauliques soient installés corréctement et que toutes les indications sur les plaquettes soient respectées.
- Vérifier que l'installation soient purgée corréctement.
- Vérifier que les températures des fluides soient dans les limites opéraationnels et de fonctinnement.
- · Avant deprocéder à la mise en marche vérifier que tous les panneaux de fermeture soient positionnés et fixès correctement.

Ne pas modifier les liaison électriques del'unité sous peine d'annullation de la garantie.

Si presents, les résistances électriques des compresseurs doivent être activées au moins 12 heures avant le demarrage (période de prechauffe) fermant l'interrupteur principal (les resistances sont alimentées automatiquement quand l'intérrupteur est fermé). Les resistances travaillent correctement si après quelque minute la température du carter compresseur est 10/15°C supérieure à la tempèrature ambiante.

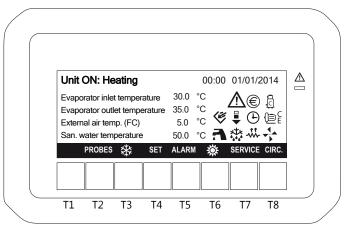
En présence de resistances électriques pour les compresseurs, durant les 12 heures de la période de prechauffe il est important de vérifier si sur l'écran de l'unité est présent le message OFF ou que l'unité est en stanby. En cas de demarrage accidental avant l'écoulement de la période de prechauffe de 12 heures, les compresseurs pourraient s'endommager serieusement et la garanti sera nulle.

5.1.2 Points de consigne d'usine

Dispositivo		Set-point	Differenziale	Tipo Reset
Mode chaud	°C	35	2	
Mode eau chaude sanitaire	°C	50	2	
Mode froid	°C	23	2	
Thermostat antigel	°C	4,5	4	Manuel
Pressostat haute pression	Bar	43,5	7	Automatique 3 fois
Pressostat basse pression	Bar	2,5	1,3	(après manuel)
Vanne de sécurité eau (Version A seule)	Bar	6,0		Automatique


Dans le cas où le mode de fonctionnement soit chaud/froid seul (sans production d'ECS) le paramètre FS1 doit être modifié de 2 à 1 pour prévenir les alarmes de configuration. En cas de nécessité contactez le fabriquant.

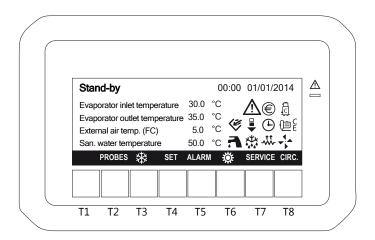
5.1.3 Contrôles durant le fonctionnement


- Contrôler la rotation des compresseurs et des ventilateurs. Si la rotation n'est pas correcte, déconnecter immédiatement l'interrupteur général et inverser les phases d'alimentation principale de façon à invertir le sens de rotation des moteurs.
- Après quelques heures de fonctionnement, vérifier que l'indicateur de liquide ait la partie centrale de couleur verte: si elle devait être jaune, on pourrait avoir de l'humidité dans le circuit. Dans ce cas il est impératif d'effectuer une déshydratation du circuit (à exécuter exclusivement par du personnel qualifié). Contrôler qu'il n'y ait pas de bulles d'air dans l'indicateur de liquide. En présence de bulles il est nécessaire intégrer la charge de fréon. La présence de quelque bulle de vapeur est tout de même admissible.
- Quelques minutes après la mise en marche de l'unité, contrôler que la température équivalente du fréon, mesurée à la pression présente en batterie avec ventilateurs fonctionnant à la vitesse maximale, diffère de la température de l'air ambiant d'environ 7-10°C; vérifier aussi que la température équivalente du fréon, mesurée à la pression présente dans l'échangeur à plaques, diffère de la température de l'eau en sortie de l'échangeur même d'environ 3-5°C.

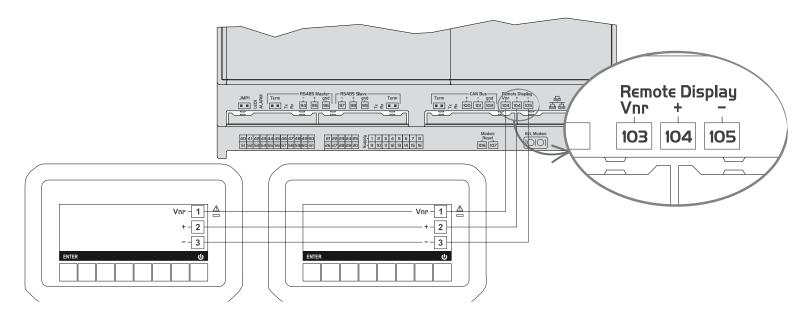
5.2 Positionnement du contrôle

5.3 Description du contrôle

5.3.1 Icônes de l'afficheur

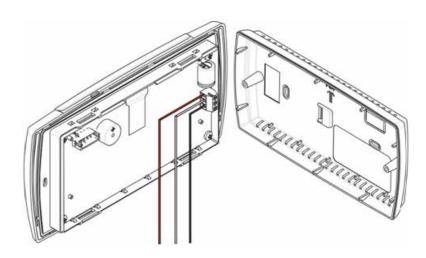

Icône	Signification	Icône	Signification
	Indica che almeno uno dei compressori è in funzione.	- ** *	Résistances antigel en fonction.
sŒE	Indica che la pompa è in funzione.	(Mise à l'arrêt automatique ou mode économie d'énergie actifs.
*	Indica che i ventilatori sono in funzione.	(E)	Free cooling en fonction (non disponible).
\triangle	Lampeggia per indicare che un allarme è attivo.	a	Eau chaude sanitaire.
€	Funzionamento in risparmio energetico.	***	Dégivrage en cours.
□	Indica che è in corso la modalità UNLOA- DING (non disponibile).	CH	Fonctionnement seul froid
HP	Fonctionnement en pompe à chaleur	HW	Etat sanitaire

5.3.2 Fonction des touches


T2:	PROBES	Visualisation lecture sondes.
T3:	*	Mise en marche unité en mode froid.
T4:	SET	Accès au mode visualisation et modification des points de consigne.
T5:	ALARM	Visualisation et reset alarmes.
T6:	☀	Mise en marche unité en mode chaud.
T7:	SERVICE	Accès au menu SERVICE.
T8:	CIRC	Accès aux informations de circuit (état compresseurs, état pompes eau, état sondes).

Quand l'unité est en marche, l'affichage sera le suivant:

5.4.2 Schéma de raccordement clavier déporté



Le clavier peut être déporté jusqu'à une distance maximale de 50 mètres. En cas de polarité non respectée le clavier déporté et le contrôle peuvent s'endommager irrémédiablement.

- En absence d'alimentation, le clavier ne fonctionne pas.
- En absence de communication, le clavier affiche "noL" (no lien).

5.4.1 Schéma de montage mural

6. UTILISATION

6.1 Mise en marche et démarrage initial

Mise en marche et à l'arrêt de l'unité peuvent être effectués par:

- clavier
- ON/OFF déporté

Avant la mise en service, consulter et effectuer les opérations décrites au paragraphe "Contrôles périodiques".

6.1.1 Mise en marche de l'unité par clavier

Mode froid

Si nécessaire, commence la temporisation du compresseur et l'icône correspondante clignote. La pompe à eau sera activée après quelque seconde, successivement, une fois la temporisation terminée, le compresseur démarre et l'icone reste allumé. L'écran visualise la température de retour eau utilisateur et la température de retour eau chaude sanitaire.

Mode chaud

Pour allumer l'unité en mode chaud, appuyer la touche 🌞 . L'icône 🔅 apparait sur l'afficheur.

Si nécessaire, commence la temporisation du compresseur et l'icône correspondante clignote. La pompe à eau sera activée après quelque seconde, successivement, une fois la temporisation terminée, le compresseur démarre et l'icone reste allumé. L'écran visualise la température de retour eau utilisateur et la température de retour eau chaude sanitaire.

Mode eau chaude sanitaire

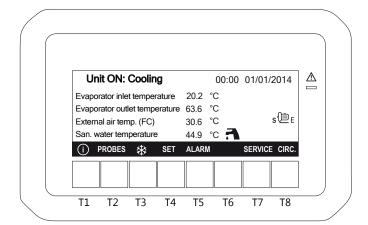
Lors de la première mise en service, contrôler la température de retour de l'eau chaude sanitaire mesurée par la sonde BTS (prioritaire par rapport aux autres consignes) et, si la température mesurée est plus basse que le point de consigne eau chaude sanitaire, l'unité démarrera automatiquement en mode ECS. Si on demande à l'unité de chauffer et la température ECS est majeure du point de consigne (dans ce cas l'ECS n'est pas en demande) le contrôle activera le mode chaud.

Dans les versions P4S si on demande à l'unité de refroidir et de produire ECS, le contrôle activera les deux fonctions en contemporaine. Si l'ECS n'est pas demandée, le contrôle activera seulement le mode froid.

Avec unité en veille on peut:

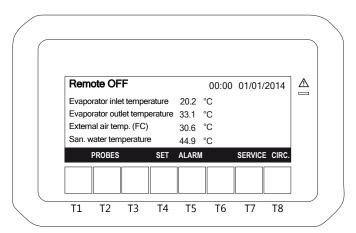
- · Afficher les valeurs relevées
- · Gérer les alarmes, visualisation et report.


N'éteindre jamais l'unité par l'interrupteur principal: il est à utiliser exclusivement pour mettre hors tension l'unité une fois à l'arrêt. La disjonction empêche entre autre l'alimentation des résistances carter, avec risque de casser les compresseurs au démarrage.


6.1.2 Mode chaud et froid

Le clavier ci-dessous illustre l'affichage typique lors du fonctionnement en:

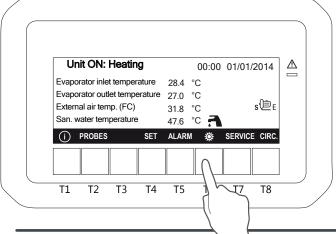
MODE CHAUD

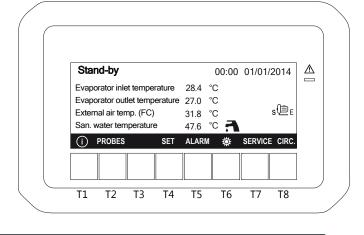


MODE FROID

6.1.3 Mise en marche de l'unité par entrée numérique

Si l'unité est mise à l'arrêt par entrée numérique, l'affichage sera le suivant:

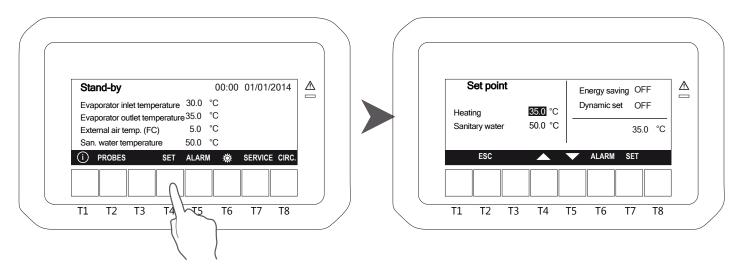



Quand l'entrée numérique est inactive, l'unité est à l'arrêt.

- L'entrée numérique est prioritaire sur le clavier
- L'unité peut être mise en marche et à l'arrêt seulement si l'entrée numérique est activée

6.2 Mise à l'arrêt

Pour éteindre l'unité appuyer la touche T6.


MTEC.7100.FR-C-122 Manuel d'instructions serie LHi Français

Rev. C 05-2021

6.3 Comment changer les points de consignes

Pour modifier les points de consigne, de l'écran d'accueil, appuyer SET .

Pour modifier les valeurs, positionner le curseur sur la valeur désirée avec T4; appuyer SET pour sélectionner, la valeur commence à clignoter, modifier avec T4 et T5. Une fois atteinte la valeur désirée appuyer SET pour confirmer.

Le curseur se positionnera sur la valeur suivante, pour la modifier répéter l'opération ci-dessus. Dans cet affichage on peut visualiser (mais pas modifier) le mode économie d'énergie et le point de consigne dynamique

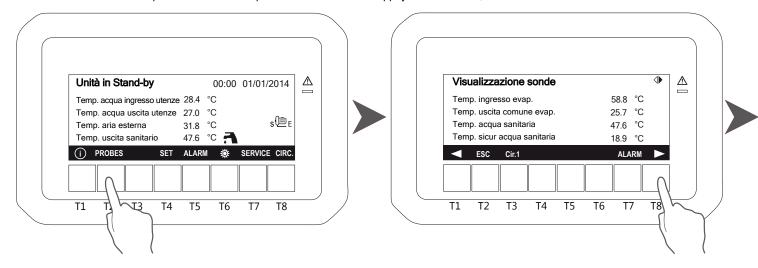
Appuyer T2 pour revenir à l'écran d'accueil.

Tous les points de consigne réfèrent à la température de retour. Si on demande eau chaude à 45°C et le Dt est 5°C, le point de consigne doit être réglé à 40°C. Au cas où le Dt soit 8°C, le point de consigne doit être réglé à 37°C. Si on demande eau froide à 15°C et le Dt est 5°C, le point de consigne doit être réglé à 20°C. Si le Dt est 8°C, le point de consigne doit être réglé à 23°C

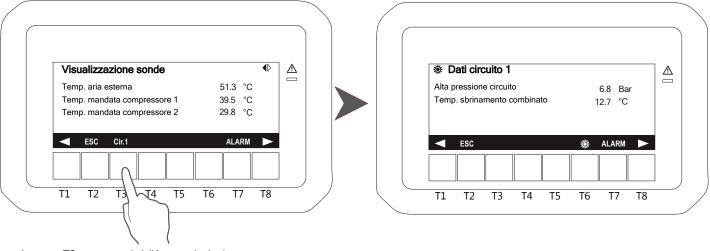
6.3.1 Consignes

Les consignes modifiables par l'utilisateur sont:

Fonction	Limites d'ajustement	Valeur par défaut
Consigne chauffage	10÷55°C	35°C
Consigne eau chaude sanitaire	20÷55°C	50°C
Consigne refroidissement	10÷25°C	23°C
Consigne compensation	0÷15°C	10°C
Password	(Contacte	r le SAV)



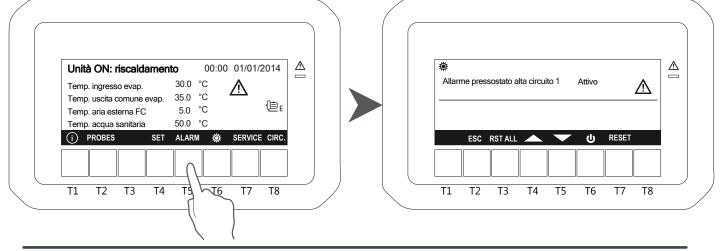
Les unités sont fournies d'un système de contrôle très sophistiqué avec beaucoup d'autres paramètres qui ne sont pas réglables par l'utilisateur final; ces paramètres sont protégés par le mot de passe du Fabriquant.



6.4 Touche PROBES

Pour visualiser tous les paramètres mesurés par les sondes de l'unité appuyer la touche T2;

En appuyant la touche T8, on visualisera d'autres valeurs relatives au circuit.


Appuyer T2 pour revenir à l'écran principal.

6.5 Touche ALARM

Quand une alarme est active, sur l'afficheur le simbole

Pour visualiser l'alarme appuyer T5 :

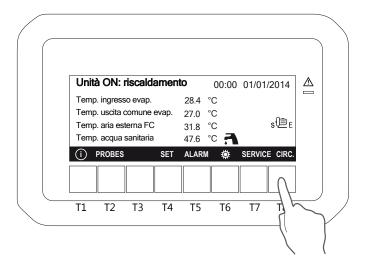
On a trois familles d'alarme:

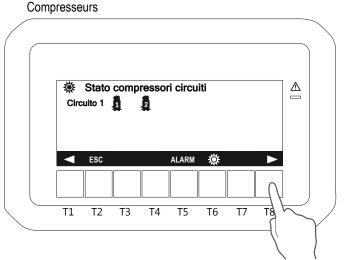
- Resettables: dans ce cas, l'alarme n'est plus active et peut être remise à zéro. Positionner le curseur sur l'alarme avec les touches T4 et T5 et appuyer T7.
- Password: l'alarme n'est plus active, mais un mot de passe est nécessaire pour le remettre à zéro (contacter le Fabricant).
- Active: l'alarme est encore active.

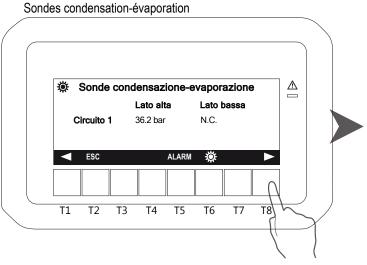
En présence de plusieurs alarmes signalées, on peut les effacer toutes en même temps en appuyant T3. En tout cas, toutes les alarmes, même si remise à zéro, restent mémorisés dans l'historique alarmes.

6.6 Touche CIRC

Appuyer sur CIRC pour visualiser les différents paramètres de l'unité:

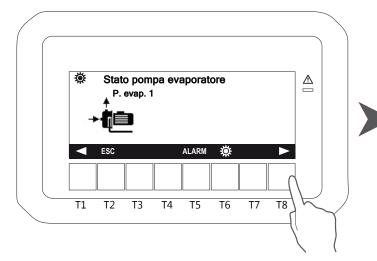

Appuyer sur T1 et sur T8, pour passer d'un affichage à l'autre.


Compresseurs; l'affichage montre les compresseurs présents en chaque circuit et leur état de fonctionnement.

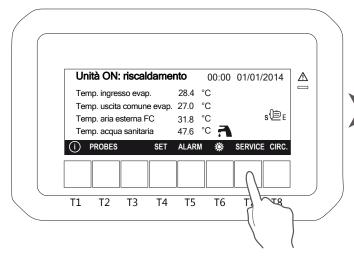

Couleur noir: compresseur en fonction **Couleur blanc**: compresseur en veille

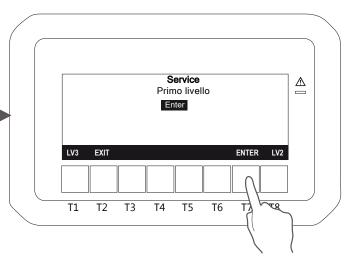
Si on utilise des compresseurs en modulation (typiquement compresseurs à vis ou inverter) une icône à droite du compresseur montre le niveau de modulation.

Si on utilise des compresseurs tout ou rien (Scroll) aucune icône est visualisée.

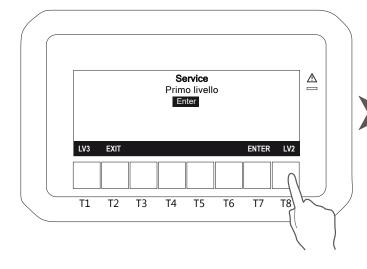


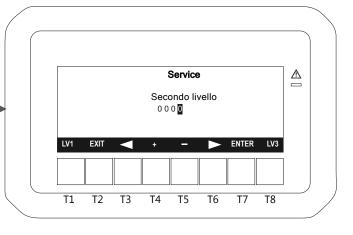


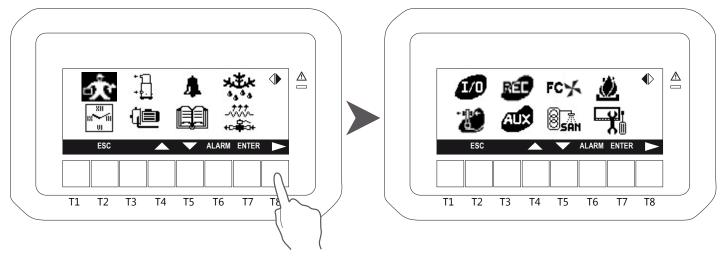

Pompe évaporateur



Régulateur de vitesse ventilateur




6.7 Touche SERVICE



Pour accéder à ce menu sélectionner T7. Le système demande un mot de passe pour accéder aux différents niveaux de sécurité; appuyer T7 pour rentrer au premier niveau ou T1 ou T8 pour accéder aux niveaux suivants.

Appuyez sur la touche T7 dans l'écran principal pour accéder aux menus suivants:

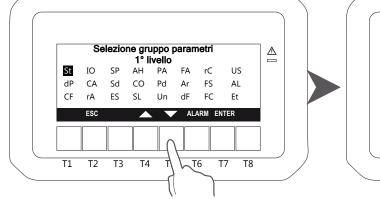
漱	Setting parameters (for service only)	- 110	Expansion Valve
12 VIII	Time and date setting	10	I/O status (Inputs and Outputs)
+ <u>[]</u>	Compressors status	REF	Recovery (Not available)
	Pumps	AUX	Auxiliary outputs
4	Display of alarms	FC⊀	Free cooling (Not available)
	Alarm history	8 AN	Domestic hot water (if available)
***	Defrost (if available)	٨	Auxiliary heating (if available)
-‱- +c#3+	Electrical heater and pump down valve status	7	Control panel

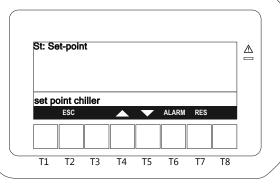
Appuyez sur la touche T8 pour afficher le menu tous disponibles.

Se déplacer entre les menus disponibles à l'aide des touches T4 et T5 appuyez sur T7 pour sélectionner le menu souhaité.

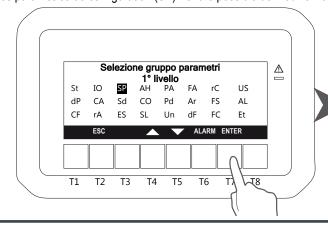
Pour modifier la valeur du paramètre: appuyez sur T4 ou T5 pour sélectionner le paramètre à modifier la valeur, puis appuyez sur SET pour commencer à clignoter, appuyez sur T4 et T5 pour modifier, appuyez à nouveau SET que pour confirmer.

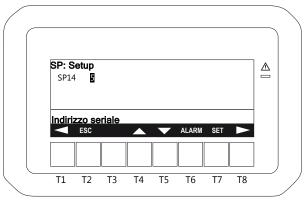
6.7.1 Réglage des paramètres de service


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.

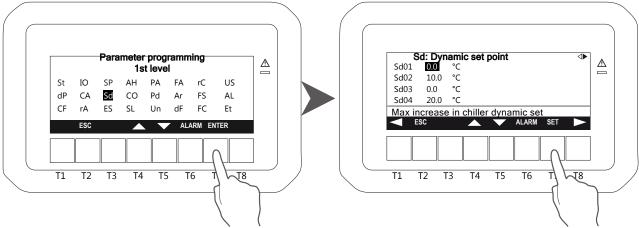

Avec le niveau de mot de passe 1 vous ne pouviez modifier le point de consigne (St), Adresse série (SP), point de consigne dynamique (Sd), économie d'énergie (ES) et les paramètres du circuit sanitaire (FS); l'appareil doit être en stand-by. Appuyez sur T7 pour entrer dans le groupe de paramètres. D'autres paramètres peuvent être modifiés en appuyant sur LV2 et LV3 clés par les gens de service uniquement avec un mot de passe dédié.

Parameters list:


i didifictoro fiot			
Code	Meaning	Code	Meaning
ST	Point de consigne	FA	Paramètres ventilation
DP	Visualisation	Ar	Paramètre résistances électriques
CF	Paramètres configuration	dF	Paramètres dégivrage
SP	Paramètres configuration machine	rC	Not available
Sd	Paramètres point dynamique	FS	Production d'ECS
ES	Paramètres dates et sauvegardes	FC	Not available
AH	Auxiliary heating parameters	US	Paramètres sorties auxiliaires
CO	Paramètre des compresseurs	AL	Paramètres des alarmes
SL	Paramètre régulation compresseur	Et	Not available
PA	Paramètres pompes cocondenseur/évaporateur	10	Configuration entrée/sortie
Pd	Not available	CA	Not available
Un	Paramètres décharge compresseurs	RA	Calibration des entrées analogiques


Les valeurs disponibles dans le groupe de paramètres « point de consigne » (St) sont les suivants: point de consigne d'été (ST01) et point de consigne d'hiver (ST04).

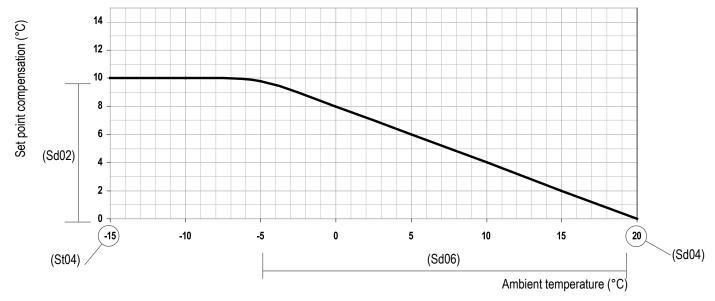
Les paramètres de configuration (SP): rendre possible de modifier l'adresse de série.



Pour modifier la valeur de la clé de presse de paramètre T7 la valeur commence à clignoter, appuyez sur T4 et T5 pour modifier, appuyez à nouveau T7 que pour confirmer.

Les valeurs disponibles dans le groupe de paramètres « point de consigne dynamique » (Sd) sont les suivants: point de consigne dynamique: été offset (SD01), point de consigne dynamique: hiver offset (SD02), point de consigne dynamique: l'été en dehors de température. (SD03), point de consigne dynamique: hiver température extérieure. (SD04), le point de consigne dynamique: temp différentiel d'été. (SD05) et le point de consigne dynamique: temp différentiel d'hiver (SD06).

Pour plus d'informations sur les paramètres voir par. 6.3.1 et 6.3.2.

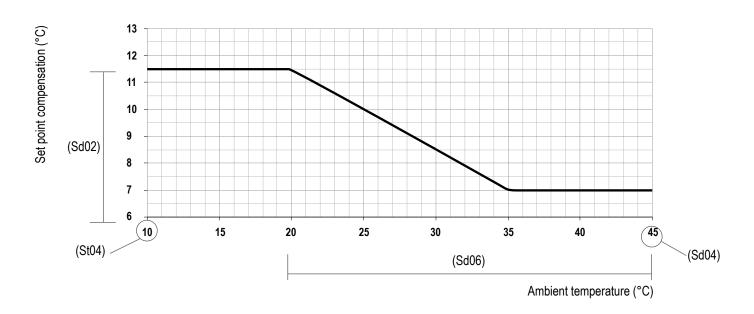


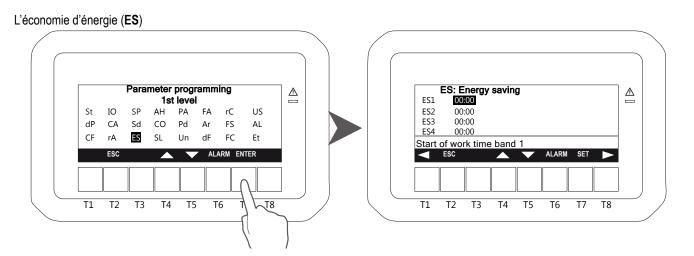
Appuyez sur les touches T4 et T5 pour sélectionner le paramètre.

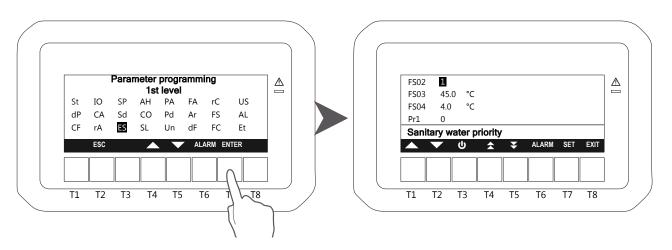
Pour modifier la valeur du paramètre appuyer sur la touche T7 la valeur commence à clignoter, appuyez sur T4 et T5 touches pour modifier, appuyez sur T7 que pour confirmer.

Météo fonction compensé

Cette fonction permet d'activer le capteur de compensation de temps afin d'optimiser l'efficacité de l'unité. Automatiquement il modifie la valeur de consigne par rapport à la température de l'air extérieur: un calcul est effectué sur la valeur de consigne à la condition de la valeur révisée de point de consigne pour des conditions ambiantes plus élevées (voir exemple donné ci-dessous). Cette fonction permet d'économiser de l'énergie et d'utiliser l'appareil dans des conditions ambiantes extrêmes. Cette fonction est active uniquement en mode de chauffage.

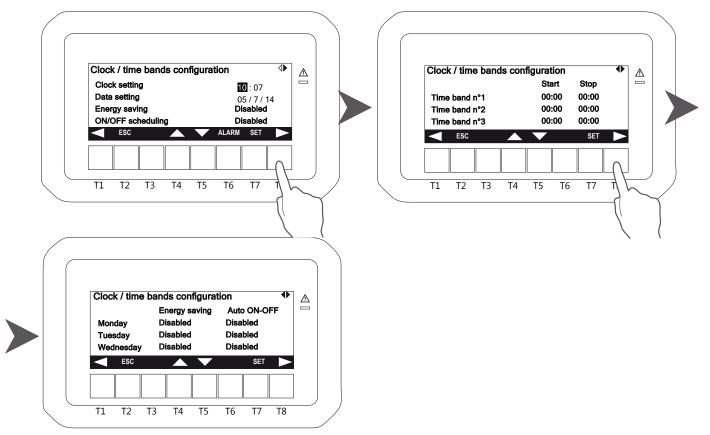



Toutes les unités sont fonction réglée en usine avec le temps compensé activé. La pente commence à + 20 ° C avec un différentiel de 10 ° C.


Avec le mode d'économie d'énergie activée, si la touche set appuyez deux fois sur le fond de l'écran affiche l'étiquette SEtTR (point de consigne compensé météo) qui est le point de consigne spécifique calculée par la commande à microprocesseur pour la condition de température ambiante mesurée.

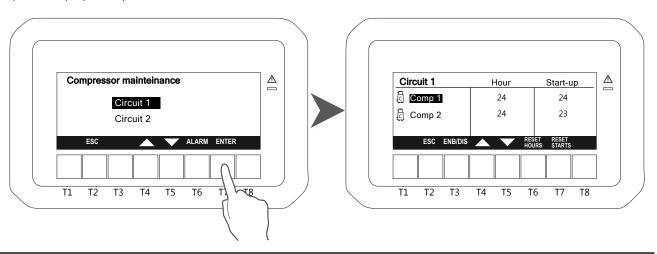
Les valeurs disponibles dans le groupe de paramètres « circuit sanitaire » (FS) sont les suivants: priorité d'eau sanitaire (FS02) Point de consigne de l'eau sanitaire (FS03) de l'eau sanitaire bande proportionnelle (FS04).

6.7.2 Réglage de la date et l'heure


Pour accéder à ce menu, sélectionnez

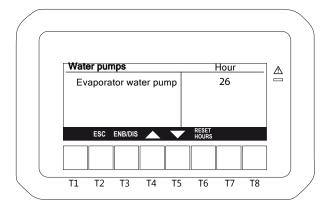
déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.

Appuyez sur T4 et T5 pour sélectionner la valeur que vous souhaitez modifier que appuyez sur T7. Le paramètre sélectionné commence à clignoter, puis appuyez sur T4 et T5 pour régler la valeur, puis appuyez sur T7pour confirmer.


Il est urgent possible de lire les informations sur l'économie d'énergie, la planification ON / OFF et bandes temps. Pour modifier l'heure de la bande de temps et pour activer la fonction est nécessaire d'insérer le mot de passe, dans le cas où vous ne disposez pas d'un mot de passe, vous ne pouvez voir les différents paramètres.

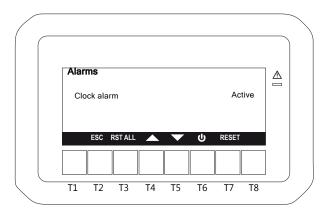
6.7.3 Maintenance du compresseur

Pour accéder à ce menu, sélectionnez • déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.


Il est possible d'afficher les compresseurs heure de travail et le nombre d'activations. Sélectionnez le circuit avec les touches T3 et T4 puis appuyez T7 sur pour afficher les paramètres. La fonction désactivation des compresseurs et des fonctions de réinitialisation T3, T5, T6 ne sont possibles que par des personnes de service.

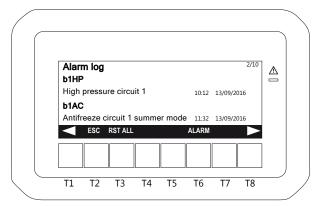
6.7.4 Les pompes à eau

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7. Il est possible d'afficher les heures de travail des pompes à eau. La fonction T6 est possible que par des personnes de service.



6.7.5 Alarmes

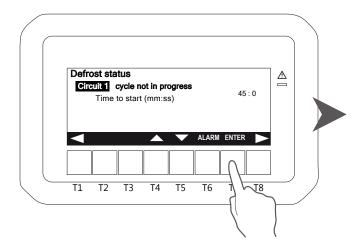
Pour accéder à ce menu, sélectionnez

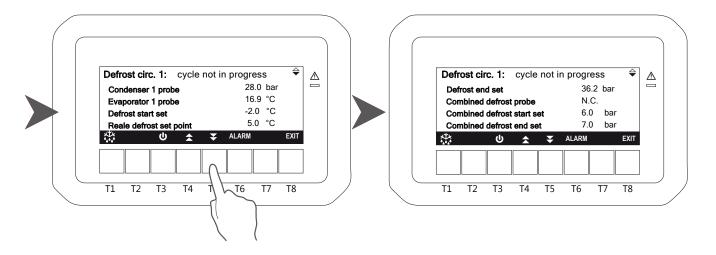

déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.

6.7.6 Historique alarmes

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.

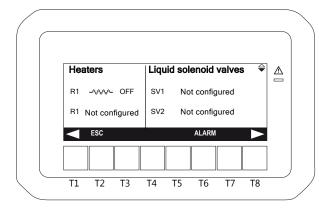
En appuyant sur T1 et T8 il est possible de lire les 99 dernières alarmes. La fonction de remise à zéro de toutes les alarmes T3 est possible que par des personnes de service.




6.7.7 Degivrage

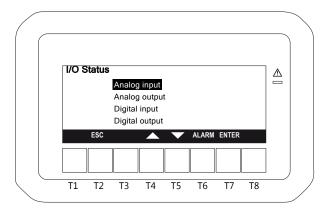
Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7.

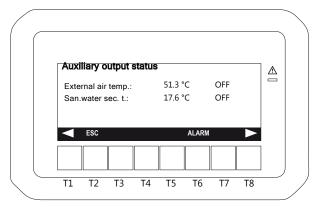
Pour chaque circuit, il est possible de lire l'état du dégivrage et, après avoir sélectionné le circuit, en appuyant sur la touche T7 ,il est possible d'afficher certains paramètres liés au dégivrage du circuit (valeurs liées aux sondes et aux points de consigne).



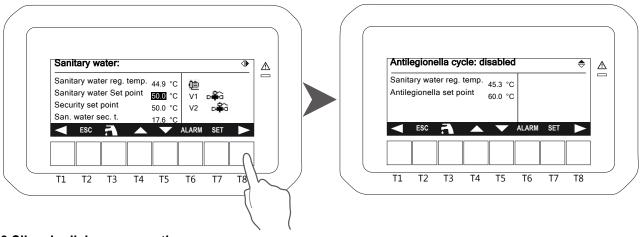
Appuyez sur T4 et T5 pour afficher tous les paramètres disponibles.

6.7.8 Résistance électrique


Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7. Il est possible de lire l'état des appareils de chauffage électriques.


6.7.9 I/O Status (Entrée/Sortie)

Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7. Il est possible d'afficher l'état des sondes , entrée analogique et une sortie, l'entrée numérique et la sortie.

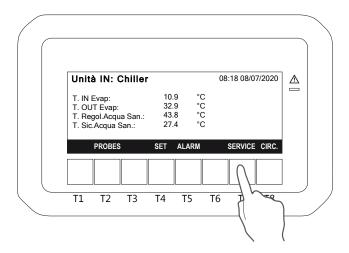

6.7.10 Sorties Auxialires

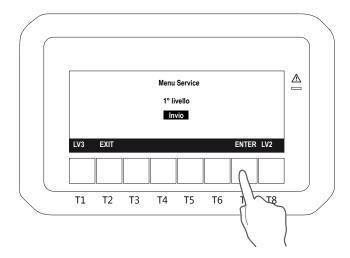
Pour accéder à ce menu, sélectionnez déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7. Il est possible de lire des informations sur les sorties auxiliaires.

6.7.11 Eau chaude sanitaire

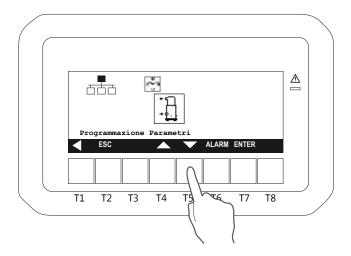
Pour accéder à ce menu, sélectionnez **SAN**déplacer entre les icônes avec les touches T4 et T5 et appuyez sur T7. Il est possible de lire des informations de la régulation de l'eau sanitaire. Appuyez sur la touche T7 pour modifier les valeurs.

6.8 Silencier l'alarme acoustique

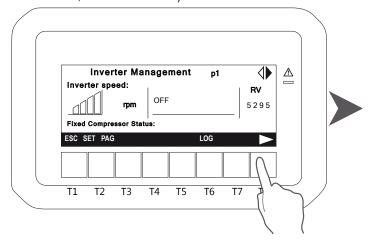

Pressez et relachez une des touches du clavier à membrane, l'alarme acoustique s'arrête, même si la condition d'alarme reste active.

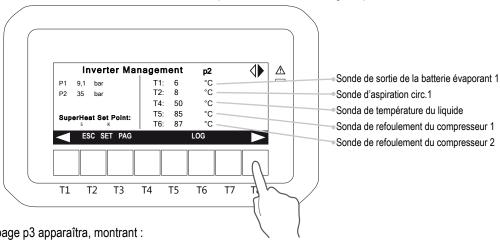

6.9 Gestion de l'inverter

Pour accéder à ce menu de gestion de l'inverter spécifique, suivez les instructions ci-dessous :

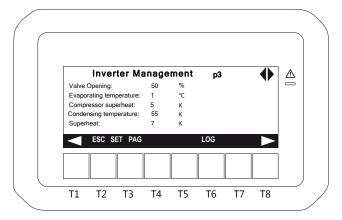

appuyez sur T7

L'écran « Menu Service, 1er niveau » apparaîtra, puis appuyez sur T7


Appuyez deux fois sur T5 et accédez à l'icône du compresseur central, comme indiqué sur l'image, puis appuyez sur T7


L'écran "Gestion de l'inverter" apparaîtra où vous pouvez lire de gauche à droite et de haut en bas :

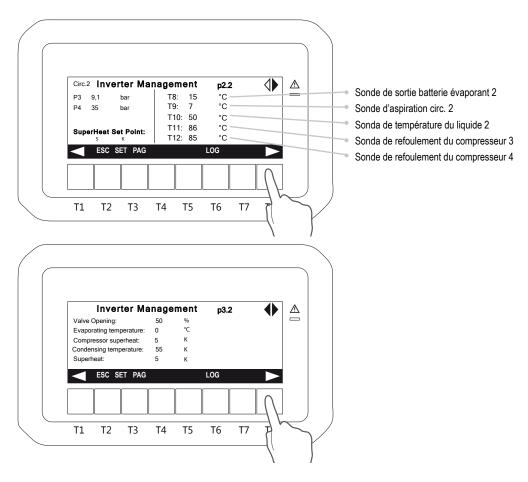
- Vitesse de l'inverter: Vitesse de rotation du compresseur exprimée en tours par minute
- Etat : l'état de fonctionnement de l'unité (par exemple arrêt, marche, refroidissement, chauffage, etc.)
- RV: le numéro de révision du logiciel
- Etat du compresseur fixe: affiche le type de compresseur à rotation fixe en marche (Si le blanc est éteint, si le noir est allumé)

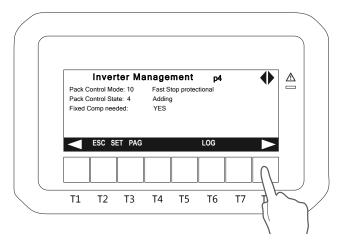

En appuyant sur le T8, la page p2, apparaîtra, montrant :

- P1: Pression d'aspiration circ.1
- P2: Pression de refoulement circ. 1
- Set Point de Surchauffer: le set point de surchauffe
- · Valeurs de T1 à T6; les températures lues dans les différentes sondes sont disposées dans le circuit frigorifique

En appuyant une autre fois T8, la page p3 apparaîtra, montrant :

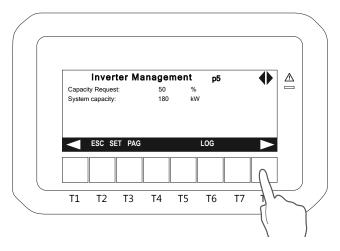
- Ouverture de la vanne : le pourcentage d'ouverture de la vanne thermostatique
- Température d'évaporation : la température moyenne d'évaporation du circuit 1
- Température de condensation : la température moyenne de condensation du circuit 1
- Surchauffe : le surchauffe du circuit 1

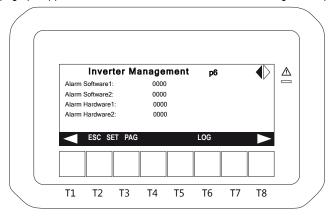



Pour les unités à deux circuits similaires aux pages p2 et p3, les pages P2.2 et P3.2 seront également présentes, qui concernent les mêmes données détectées dans les pages P2 et P3 décrites ci-dessous, mais qui concernent le circuit 2.

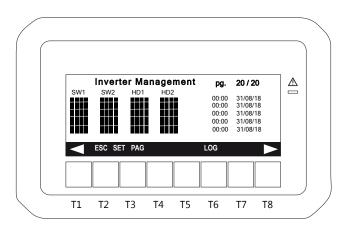
Pour le circuit 2, il y aura donc les écrans suivants où :

- P3: Pression d'aspiration circ. 2
- P4: Pression de refoulement circ. 2
- Set Point de Surchauffer : le set point de surchauffe circ. 2
- Valeurs de T8 à T12; les températures lues dans les différentes sondes disposées dans le circuit de refroidissement 2


En appuyant une autre fois T8, la page p4 apparaîtra, indiquant l'état de fonctionnement de l'unité, qui pourrait être utilisée pour le service nécessaire.



En appuyant une autre fois T8, la page p5 apparaîtra, montrant :


- Demande de capacité : le pourcentage requis de puissance théorique
- Capacité du system : la puissance théorique calculée par le système de détection

En appuyant une autre fois T8, la page p6 apparaîtra, montrant les différents états d'alarme générés pour l'autoprotection de l'unité.

Appuyez sur le T6 pour afficher l'écran final des codes d'autoprotection générés, divisé par l'heure et la data. Il faut les communiquer au service si nécessaire.

Appuyez sur T2 pour revenir aux écrans d'accueil

7. MAINTENANCE DE L'UNITÉ

7.1 Remarques générales

Le 1er Janvier 2016 entre en vigueur le Reglement (UE) 517/2004, "définit des règles relatives au confinement, à l'utilisation, à la récupération et à la destruction des gaz à effet de serre fluorés et aux mesures d'accompagnement y relatives". L'unité en objet est assujetée aux obligations normatives listées de suite, qui devraient etre effectuées par tous les opérateurs:

- a) Tenue d'un registre de l'équipement.
- b) Correcte installation, manutention et réparation de l'équipement.
- c) Détection des fuites.
- d) Récupération du réfrigérant et éventuelle élimination.
- e) Présentation aux organes compétents la déclaration annuelle concernant les émissions en atmosphère de gaz fluorés à effet serre.

Les opérations de maintenance permettent de:

- · Maintenir l'éfficacité de l'unité.
- Prévenir d'éventuels dégâts.
- · Augmenter le cycle de vie de la machine.

On recommande de prévoir un carnet d'entretien dans le but de maintenir trace des interventions effectuées sur l'unité facilitant ainsi l'éventuelle recherche de pannes.

Les opérations d'entretien doivent être exécutées en conformité des prescriptions aux paragraphes précédents.

Utiliser les dispositifs de protection individuelle prévus par les normes en vigueur, car les têtes et les tuyaux de distribution des compresseurs se trouvent à température élevées et les ailettes des batteries sont tranchantes.

Dans le cas où l'unité n'est pas utilisée pendant la période d'hiver, l'eau contenue dans les tuyaux peut congeler et endommager sérieusement l'unité. Dans le cas où l'unité n'est pas utilisée pendant la période d'hiver purger complètement le circuit, en vérifiant si toutes les parties du circuit sont clairement vides et que chaque siphons intérieurs ou externes soient vides.

En cas de nécessité de remplacement d'un des composants de la machine, soit pour des opérations d'entretien ordinaire ou extraordinaire, cette partie doit avoir des caractéristiques égales ou supérieures à celles présentes. Pour caractéristiques, on entende les mêmes prestations ou supérieures, sans compromettre la sécurité, l'utilisation, la manipulation, le stockage, les pressions et les températures d'utilisation de la machine prévues par le constructeur.

Les robinets présents dans la machine se doivent trouver toujours ouverts avant le démarrage. En cas de sectionnement du circuit frigorifique par la fermeture des robinets, le démarrage de la machine, même accidentelle, doit être impérativement exclu, en outre, leur fermeture doit être adéquatement signalée par des panneaux spéciaux sur les robinets et dans le tableau électrique. Dans tous les cas, les robinets doivent rester fermés le moins possible.

7.2 Accès à l'unité

Une fois l'unité installée, l'accès doit être réservé seulement aux opérateurs et techniciens agréés. Le propriétaire de la machine est le légal représentant de la société, collectivité ou la personne physique propriétaire du site où est installée l'unité. Il est responsable du respect de toutes les normes de sécurité indiquées dans ce manuel et des normes en vigueur. Si à cause de la nature du site d'installation on ne peut pas empêcher l'accès à l'unité, il faut prévoir une zone clôturée d'au moins 1,5m de distance sur tous les côtés de l'unité, à l'intérieur de laquelle puissent opérer exclusivement opérateurs et techniciens.

7.3 Maintenance programmée

L'utilisateur doit prévoir une maintenance adéquate de l'unité, par rapport aux indications du Manuel et aux prescriptions de loi et des règlements locaux en vigueur.

L'utilisateur se doit d'assurer que l'unité soit périodiquement inspectée, vérifiée et adéquatement maintenue, selon le type, la taille, l'ancienneté et sa fonction dans le système et aux indications du Manuel.

Si, dans le système, des instruments de détection des fuites sont installés, ils devraient être inspectés au moins une fois par an, pour s'assurer qu'ils fonctionnent correctement.

Pendant sa vie opérative, l'unité devra être inspectée et vérifiée selon les lois et les règlements locaux en vigueur. Particulièrement, sauf que des spécifications plus sévères n'existent pas, il faut de suivre les indications dans le tableau ci-dessous (voir EN 378-4, ann. D), avec référence aux situations décrites.

SITUATION	Inspection visuelle	Essai de pression	Recherche des fuites
Α	X	X	X
В	X	X	X
С	X		X
D	X		X

- Inspection, après une intervention avec des possibles conséquences sur la résistance mécanique, ou après un changement d'utilisation, ou après un arrêt de la machine de plus que deux ans; il faut de remplacer tous les composants pas appropriés. Il est interdit de réaliser des vérifications aux pressions supérieures à celles de projet.
 - Inspection après une réparation, ou après une modification significative du système ou de quelque composant. La vérification se peut limiter aux composants impliqués dans l'intervention, mais, si une fuite du fluide frigorigène est présente, il faut réaliser une recherche des fuites sur le système entier.
- c Inspection après l'installation de la machine dans une position différente par rapport à celle originale. Si des conséquences sur la résistance mécanique peuvent être présents, il faut faire référence au point A.
- Recherche des fuites, en conséquence d'un soupçon bien fondé de déversement de fluide réfrigérant. Le système doit être examiné pour trouver les fuites, par des moyens directs (systèmes en mesure de prouver l'existence de la fuite) ou indirects (déduction de la présence de la fuite par l'analyse des paramètres de fonctionnement), en concentrant sur les parties plus à risque de déversement (par exemple, les jonctions).

En cas de détection d'un défaut, qui compromit la sécurité de fonctionnement, l'unité ne pourra pas être redémarrée, avant de l'avoir éliminé.

7.4 Contrôles périodiques

Les opérations de mise en service doivent être exécutées en conformité des prescriptions aux paragraphes précédents.

Toutes les opérations décrites dans ce chapitre DOIVENT ÉTRE ÉXÉCUTÉE SEULEMENT PAR DU PERSON-NEL QUALIFIÉ. Avant chaque opération d'entretien sur l'unité, soyez sûrs que l'alimentation électrique solt débranchée. La tête et les lignes distribution des compresseurs sont habituellement à haute température. Soyez très prudents en opérant dans leurs environ. Les radiateurs à ailettes en aluminium sont très aiguisés et peuvent provoquer des blessures sérieuses. Soyez très prudents en opérant dans leurs environs. Après avoir assuré l'entretien fermez soigneusement l'unité avec les panneaux et fixez-les soigneusement avec les vis fournis.

7.4.1 Réseau électrique et dispositifs de régulation

			Pério	dicité		
Opérations à effectuer	Chaque mois	Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire
Vérifier que l'unité fonctionne régulièrement et que des alarmes ne soient présentes	X					
Inspecter visuellement l'unité	Х					
Vérifier le bruit et les vibrations de l'unité				Х		
Vérifier la fonctionnalité des dispositifs de sécurité et des interblocs				Х		
Vérifier les prestations de l'unité				Х		
Vérifier l'énergie consommée par les différentes appareils (compresseurs, ventila- teurs, etc.)				х		
Vérifier la tension d'alimentation de l'unité			Х			
Vérifier la fixation des câbles sur les serre-câbles appropriés			Х			
Vérifier l'intégrité du revêtement isolant des câbles électriques				Х		
Vérifier l'état et le fonctionnement des compteurs				Х		
Vérifier le fonctionnement du microprocesseur et de l'afficheur			Х			
Nettoyer les composants électriques et électroniques par la poussière éventuelle- ment présente				х		
Vérifier le fonctionnement et le calibrage des sondes et des transducteurs				Х		

7.4.2 Batterie ventilateurs et circuit frigorifique et hydraulique

	Périodicité					
Opérations à effectuer		Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire
Inspecter visuellement la batterie	X					
Effectuer le nettoyage de la batterie à ailette (1)			X			
Vérifier le débit d'eau et/ou des fuites éventuelles	Х					
Vérifier que l'interrupteur de débit fonctionne correctement			Х			
Effectuer le nettoyage du filtre métallique installé sur le conduit de l'eau (3)			Х			
Vérifier le bruit et les vibrations des ventilateurs				Х		
Vérifier la tension d'alimentation des ventilateurs			Х			
Vérifier les branchements électriques des ventilateurs				Х		
Vérifier le fonctionnement et la calibration du système de régulation de la vitesse des ventilateurs				х		
Vérifier le fonctionnement de la vanne à 4 voies (si présente)				Х		
Vérifier la présence de l'air dans le circuit frigorifique	Х					
Vérifier la couleur de l'indicateur d'humidité dans la conduite de liquide				Х		
Vérifier des éventuelles fuites de fréon (2)						Х

(1) En cas d'installation réalisée dans un endroit avec une présence élevée de sable, poussière ou pollen, ou en proximité d'aéroports, industries ou zones avec un taux de pollution de l'air élevé, il est nécessaire de prévoir l'inspection et le nettoyage des batteries tous les 3 mois (ou plus souvent).

(2) Pour effectuer des opérations sur le réfrigérant, il est nécessaire respecter le règlement européen 517_2014 "Obligations en matière de limitation, utilisation, récupération et destruction des gaz à effet de serre fluorés utilisés sur les appareils fixes de réfrigération, climatisation de l'air et pompes à chaleur".

 $^{(3)}$ Peut être effectué avec une fréquence plus élevée (même chaque semaine) en fonction du Δt .

7.4.3 Compresseurs

	Périodicité					
Opérations à effectuer	Chaque mois	Tous les 2 mois	Tous les 6 mois	Chaque année	Tous les 5 années	Quand nécessaire
Inspecter visuellement les compresseurs				Х		
Vérifier le bruit et les vibrations des compresseurs				Х		
Vérifier la tension d'alimentation des compresseurs			Х			
Vérifier les branchements électriques des compresseurs				Х		
Vérifier le niveau d'huile dans les compresseurs par l'indicateur approprié			Х			
Vérifier que les résistances de carter soient branchés et que fonctionnent correctement				х		
Vérifier l'état des câbles électriques des compresseurs et leur fixation sur les serre-câbles			Х			

Les opérations à réaliser chaque jour ou chaque mois peuvent être réalisé directement par le propriétaire de l'installation. Les autres interventions doivent être effectués par du personnel qualifié et suffisamment entrainés.

Il est interdit d'effectuer aucune opération de nettoyage avant d'avoir débranché l'appareil du réseau électrique, en tournant l'interrupteur général en position OFF. Il est aussi interdit de toucher l'appareil aux pieds nus, ou avec des parties du corps mouillés ou humides.

Les interventions sur le circuit frigorifique doivent être effectuées par des techniciens adéquatement qualifiés et entrainés, qualifiés en fonction des lois et des règlements locaux en vigueur.

Avant du premier démarrage, il est nécessaire d'effectuer toutes les opérations décrites dans les tableaux précédents et de faire les contrôles nécessaires prévus par le module prédémarrage, qui peut être demandé à notre département de service.

7.4 Réparation de circuit réfrigérant

Dans le cas où l'on se trouve dans la nécessité de vidanger le circuit frigorifique il est obligatoire de récupérer le réfrigérant avec outils spécifiques.

Le système doit être chargé avec de l'azote, en utilisant une bouteille du gaz avec une valnne de réduction de pression, jusqu'à ce que la pression de 15 bar soit atteinte. Toute fuite peut être trouvée en utilisant un détecteur de fuite (liquid savoneux spécifique). Dans le cas où des bulles apparaissent, il est impératif de décharger complètement le circuit de réfrigérant puis de braser l'endroit de la fuite avec une brasure appropriée.

N'utilisez jamais de l'oxygène au lieu de l'azote pour ce contrôle risque d'explosion.

Les circuits frigorifiques fonctionnant avec fréon nécessitent d'attentions particulières lors de l'installation et de l'entretien, pour garantir le bon fonctionnement.

Il est donc nécessaire

- Éviter de réintégrer de l'huile différente de celle présente dans le circuit.
- Pour les unités chargées en R410A, en cas de fuite de gaz même en petite quantité, éviter de rajouter la partie manquante, vidanger complètement l'unité en récupérant le fréon et, après avoir mis l'unité sous vide, recharger avec la quantité indiquée.
- En cas de remplacement de tout composant du circuit frigorifique, ne laissez jamais le circuit ouvert plus de 15 minutes.
- En particulier, en cas de remplacement du compresseur, compléter l'installation dans le délais indiqué, après avoir ôté les bouchons en caoutchouc.
- En cas de remplacement du compresseur, il est recommandé le lavage du circuit frigorifique avec des produits adéquats en ajoutant, pour le temps nécessaire, un filtre anti-acide.
- En condition de vide n'alimentez jamais le compresseur.

8. MISE A L'ARRET DÉFINITIF DE L'APPAREIL

8.1 Mise hors circuit

Toute opération de mise hors service doit être exécutée par du personnel agrée en conformité aux normes en vigueur dans le pays de destination.

- Éviter fuites et versements.
- Avant de déconnecter l'unité récupérer si présent:
 - · Le gaz réfrigérant;
 - · Les solutions antigel dans le circuit hydraulique;
 - L'huile lubrifiante des compresseurs

En attente de l'élimination, l'unité peut être stockée à l'extérieur, sous condition que les circuits sont intègres et fermés.

8.2 Élimination, récupération et recyclage

La carcasse et les composantes constituant la machine si elles ne sont pas re utilisables, doivent être démontées triés et récupérés selon leur nature; particulièrement le cuivre et l'aluminium, qui sont présents en quantité non négligeable dans l'unité. Ces opérations permettent un recyclage des matériaux efficace, réduisant ainsi son impacte environnemental.

The refrigerant circuit of the unit contains lubricant oil that binds the disposal mode of components.

8.3 Directive RAEE (UE uniquement)

Le symbole de la poubelle barrée signifie que le produit est conforme aux normes sur les déchets électriques et électroniques.

L'abandon du produit dans l'environnement ou son élimination illégale est puni par la loi.

Ce produit est compris dans le champ d'application de la Directive 2012/19/UE qui concerne la gestion des déchets d'appareils électriques et électroniques (RAEE).

Il est interdit d'éliminer l'appareil avec les déchets ménagers, étant donné qu'il est composé par des différents matériaux, qui peuvent être recyclés dans les structures appropriées. Informez-vous chez les autorités locales pour connaître le positionnement du centre de collecte et de récupération pour le traitement et le conséquent correct recyclage du produit.

Le produit n'est pas potentiellement dangereux pour la santé humaine et l'environnement, du moment que aucune substance nocive aux termes de la Directive 2011/65/EU (RoHS) n'est présente, mais peut avoir des impacts négatives sur l'écosystème, si abandonné dans l'environnement. Lisez attentivement les instructions avant d'utiliser l'appareil pour la première fois. Il est fortement déconseillé d'utiliser le produit pour un emploi différent de celui pour lequel il a été conçu ; la mauvaise utilisation du même peut entraîner un risque de décharge électrique.

9. RÉSOLUTION DES DISFONCTIONNEMENTS

9.1 Dépannage

Toute unité est vérifiée et testée en usine avant la livraison, il est toutefois possible que durant le fonctionnement il y ait des anomalies ou panne.

ON RECOMMENDE DE REINITIALISER TOUTE ALARME SEULEMENT APRÈS AVOIR RÉINITILAISÉ LA CAU-SE QUI L'A GÉNÉRÉE; RÉINTIALISATION RÉPÉTÉES PEUVENT CAUSER DES DOMMAGES IRRÉVERSI-BLES À L'UNITÉ

	Unit alarms						
Code	Visualization	Alarm Description	Cause	Solution			
ACF1 ACF19	Conf AL1Conf AL19	Configuration alarme	mauvaise configuration du régulateur	Contactez la société			
AEFL	Plant side flow AL	Allarme flussostato acqua utenza	Presenza di aria o sporcizia nell'impianto idraulico utenza.	Sfiatare lentamente l'im- pianto idraulico utenza o controllare e pulire il filtro acqua.			
ACFL	Détecteur de débit d'eau source AL	Alarme débit d'eau source (Unité eau/eau uniquement)	Présence d'air ou de saleté dans le système hydraulique source (Unité eau/eau uniquement)	Purgez le réseau d'eau coté source ou nettoyer le filtre coté source			
AEUn	Notification décharge com- presseur	Alarme de déchargement du compresseur (Uniquement les unités avec plus d'un compresseur	La température de l'eau utilisateur est trop élevée.	Attendre que la temperature d'eau soit plus basse			
AHFL	Détecteur de débit d'eau sanitaire AL	Alarme debit d'eau chaude sanitaire	Présence d'air ou de saleté dans le système hydraulique	Purgez le réseau d'eau coté utilisateur ou nettoyer le filtre coté utilisateur			

AP1AP10	Pb AL1 Pb AL10	Alarme sondes entrées		Vérifica la compositor électri
AP11AP20	Pb1 AL e1Pb7 AL e1	Alarme pression 1 (si utilisé)	Mauvaises connections électriques, sondes déffec- tueuses	Vérifiez la connexion électri- que du bornier remplacer le sonde déffec-
AP21AP27	Pb1 AL e2Pb7 AL e2	Alarme pression2 (si utilisé)		tueuse
AtC1	Pompe condenseur 1	Pompe condenseur 1 en défaut thermique (unité eau/ eau uniquement)	Contrôler le circuit hydrau- lique	Contrôler le circuit hydrau- lique
AtC1	Pompe condenseur 2	Pompe condenseur 2 en défaut thermique (unité eau/ eau uniquement)	Contrôler le circuit hydrau- lique	Contrôler le circuit hydrau- lique
AtE1	Pompe évaporateur 1	Pompe évaporateur 1 en défaut thermique	Contrôler le circuit hydrau- lique	Contrôler le circuit hydrau- lique
AtE2	Evaporator water pump 2 overload	Pompe évaporateur 2 en défaut thermique Si présente	Contrôler le circuit hydrau- lique	Contrôler le circuit hydrau- lique
AEht	Entrée temperature d'eau évaporateur trop chaude	Entrée temperature d'eau évaporateur trop chaude	Alarme haute temperature entrée évaporateur	Attendre que la température d'eau redescende
AEM1	E1 discon	alarme auxiliaire 1	La carte auxiliaire est déffec-	Contrôler l'adressage de la
AEM2	E2 discon	alarme auxiliaire 2	tueuse.	carte auxiliaire.
AFFC	Antif AL FC	Alarme anti-gel free-cooling (si présent)	Présence d'air ou de saleté dans le réseau free-cooling	Contactez le sav
Atrb	Boiler overl AL	Surchauffe résistances électriques d'appoints	Thermostat hors service	Contact the service department.
APS	Phases sequ AL	Alarme sens des phases	Relais de séquençage en défaut.	Contrôlez le raccordement du relais
AFr	Power supply freq.AL	Alarme fréquence	La configuration du contrôle de fréquence est obsolète	Contactez le sav
ALc1	Generic AL1	Alarme générique 1		Contactez le sav
ALc2	Generic AL2	Alarme générique 2		Contactez le sav
Probe fault	Défaut sonde	Alarme câblage	Cablâge erroné ou sonde déffectueuse	Controler le cablage ou remplacer la sonde

	Circuit alarms						
Code	Visualization	Alarm Description	Cause	Solution			
B(n)HP	Hi press circ(n)	Pressostat haute pression (n)	En mode chauffage: Flux d'eau du circuit utilisateur insuffisant; Débit d'eau du circuit d'eau chaude sanitaire insuffisant. En mode de refroidissement: Débit d'air insuffisant au niveau du ventilateur source; Débit d'eau du circuit d'eau chaude domestique insuffisant	Rétablissez le bon flux d'eau du circuit utilisateur. Restaurer le flux correct d'e- au du circuit d'eau chaude domestique. Rétablissez le débit d'air correct pour étaler le ventilateur. Re- staurer le flux correct d'eau du circuit d'eau chaude domestique.			
b(n)AC	Antif/lo temp.C(n) (DI - CH) Antif/lo temp.C(n) (AI - CH)	Alarme antigel (n) en mode froid	Température d'eau trop basse	Vérifier le point de consigne de température utilisateur; Vérifier le débit d'eau utilisateur			
b(n)AH	Antif/lo temp.C(n) (DI - HP) Antif/lo temp.C1 (AI - HP)	Alarme antigel (n) en mode chaud	Température d'eau trop basse	Vérifier le point de consigne			
b(n)dF	dF AL circ(n)	Wrong defrost circuit (n) (maximum time admitted)	Temps de dégivrage trop long; Température extérieure en dehors des limites de fonctionnement; Fuite de charge de réfrigérant	Restaurer les conditions normales de travail			
b(n)hP	Hi press circ(n)	High pressure transducer alarm circuit (n)	En mode chauffage: Flux d'eau du circuit utilisateur insuffisant; Débit d'eau du circuit d'eau chaude sanitaire insuffisant. En mode de refroidissement: Débit d'air insuffisant au niveau du ventilateur source; Circuit d'eau du circuit d'eau chaude sanitaire insuffisant	Rétablissez le bon flux d'eau du circuit utilisateur. Restaurer le flux correct d'eau du circuit d'eau chaude domestique. Rétablissez le débit d'air correct pour étaler le ventilateur. Restaurer le flux correct d'eau du circuit d'eau chaude domestique.			
B(n)LP	Low press circ(n)	Alrme Basse pression (n)	Fuite de charge de réfri- gérant	Trouver les fuites et réparez			
b(n)IP	Low press circ(n)	Alarme transducteur basse pression)	Fuite de charge de réfri- gérant	Trouver les fuites et réparez			
b(n)tF	Cond.fan overl circ(n)	Alarme ventilocondenseur (thermique)	Surcharge ventiloconden- seur	Vérifiez le bon fonctionne- ment du ventilateur si besoin le remplacer.			

b(n)Cu	Unload high t/p circ(n)	Alarme haute pression (n)	En mode chauffage: Flux d'eau du circuit utilisateur insuffisant; Débit d'eau du circuit d'eau chaude domestique insuffisant. En mode de refroidissement: Débit d'air insuffisant au niveau du ventilateur source; Débit d'eau du circuit d'eau chaude domestique insuffisant	Contactez le sav
--------	-------------------------	---------------------------	---	------------------

La lettre (n) identifie le circuit interessé

	Compressors alarms						
Code	Visualization	Alarm Description	Cause	Rimedio			
C(n)tr	C(n) overl	Surcharge compresseur (n)	Compresseur Compresseur en défa en défaut	Remplacer le compresseur			
C(n)oP	AL oil C (n)	Thermique compresseur	Maintenance exigée	Contactez le sav			
C(n)dt	Hi Disch temp.C(n)	Temperature de décharge compresseur (n)	Maintenance exigée	Contactez le sav			

La lettre (n) identifie le compresseur interessé

Other alarms						
Visualization	Alarm Description	Cause	Solution			
Termostatic expansion valves AL!	Défaut détendeur(Seule- ment avec un détendeur électronique)	Défaut de refroidissement	Contactez le sav			
Flowmeter transd.	Défaut du transducteur	Défaut du transducteur.	Contrôler les connections si besoin, remplacer le transducteur			

ENEX TECHNOLOGIES

VIA DELLE INDUSTRIE, 7 • CAP 31030 • VACIL DI BREDA DI PIAVE (TV) TEL. +39 0422 605 311

Info@enextechnologies.com • www.enextechnologies.com

Les données techniques contenues dans cette documentation ont valeur indicative et ne constituent en aucun cas un engagement du fabriquant. Le fabriquant se réserve le droit d'apporter toute modification nécéssaire à améliorer le produit. Les langues officielles pour tout document sont l'Italien et l'Anglais, toute autre langue doit être considérée à titre indicatif.

