

HOCHEFFIZIENTE LUFT-WASSER WÄRMEPUMPE SERIE

LHA P2U/P2S

TECHNISCHES HANDBUCH

Dieses Dokument enthält:

- Konformitätserklärung
- Technisches Handbuch

Bitte lesen und beachten Sie die Anweisungen in diesem Handbuch vor der ersten Inbetriebnahme.

 $C \in$

AUFBEWAHREN ZUM SPÄTEREN NACHSCHLAGEN

Die partielle oder vollständige Vervielfältigung, Datenspeicherung und Übertragung dieses Dokuments ist in jeglicher Form ohne die vorherige schriftliche Genehmigung von die firma. verboten. Die firma kann für alle Anfragen bezüglich der Verwendung seiner Produkte kontaktiert werden.

Die firma arbeitet kontinuierlich an der Weiterentwicklung und Verbesserung der Produkte und behält sich das Recht vor, Spezifikationen, Ausrüstungshinweise und Anweisungen bezüglich Gebrauch und Wartung jederzeit und ohne Ankündigung zu ändern.

Konformitätserklärung

Wir erklären unter eigener Verantwortung, dass die unten aufgeführte Ausrüstung in allen Teilen mit den CEE-und EN-Richtlinien übereinstimmt. Die Konformitätserklärung wird in der technischen Dokumentation mit dem Gerät ausgeliefert. Die Einheit enthält fluorierte Treibhausgase.

INHALTSVERZEICHNIS

1. EINFÜHRUNG	5
1.1 Einleitende Informationen	5
1.2 Ziel und Inhalt des Handbuchs	5
1.3 Aufbewahrung des Handbuchs	5
1.4 Aktualisierung des Handbuchs	5
1.5 Anwendung des Handbuchs	5
1.6 Potentielle Risiken	6
1.7 Allgemeine Beschreibung der verwendeten Symbole	7
1.8 Sicherheitssymbole	
1.9 Beschränkungen und verbotene Nutzung	
1.10 Komponentenbezeichnung	
2. SICHERHEIT	
2.1 Warnung vor gefährlichen toxischen Substanzen	
2.2 Kältemittel Handhabung	
2.3 Vermeidung der Inhalation hoher Dampfkonzentrationen	
2.4 Vorgehensweise im Falle einer unbeabsichtigten Freisetzung von Kältemittel	
2.5 Wichtige toxikologische Eigenschaften des verwendeten Kältemittels	
2.6 Erste-Hilfe-Maßnahmen	
3. TECHNISCHE DATEN	
3.1 Gerätebeschreibung	
3.2 Andere Versionen	
3.3 Zubehör	
3.4 Technische Daten	
3.5 Einsatzgrenzen	
3.6 Warmwasserproduktion	
3.7 Korrekturtabellen	
3.8 Schalldaten	
4. INSTALLATION	
4.1 Allgemeine Sicherheitshinweise und Verwendung von Symbolen	
4.2 Gesundheit und Sicherheit des Arbeiters	
4.3 Persönliche Schutzausrüstung	
4.4 Inspektion	
4.5 Lagerung	
4.6 Auspacken	
4.7 Hebe-und Fördertechnik	
4.8 Standort und technische Mindestabstände	
4.9 Installation von Gummi-Schwingungsdämpfern (KAVG)	
4.10 Serielle Schnittstellen RS485 (INSE)	
4.11 Installation der Kondensatwanne (BRCA)	
4.12 Hydraulische Anschlüsse	
4.13 Chemische Eigenschaften des Wassers	
4.14 Hydraulikkomponenten	
4.15 Minimale Wassermenge	
4.16 Warmwasser (TW) Hydraulikkreis	
4.17 Befüllung des Hydrauliksystems	
4.18 Entleerung des Hydrauliksystems	
4.19 Elektrische Anschlüsse: Sicherheitshinweise	
4.20 Elektrische Daten	-
4.21 Elektrische Anschlüsse	
4.22 Positionierung Rücklaufsensor Heizen / Kühlen (BTI)	
4.23 Positionierung Rücklaufsensor Trinkwasser (BTS)	
4.24 Kältekreisläufe	
5. INBETRIEBNAHME	
5.1 Vorprüfungen	
5.2 Beschreibung des Bedienfeldes	
6.2 2000 illoloting doc 20010 illoloto	

5.3 Um die Anlage mit der Fernbedienung zu regeln	42
5.4 Fernsteuerung	
6. ANWENDUNG	
6.1 Ein- und Ausschalten der Anlage	45
6.2 Ausschalten	
6.3 Sollwerte	46
6.4 PROBES Taste	47
6.5 ALARM Taste	49
6.6 CIRC Taste	49
6.7 SERVICE Taste	50
6.8 Akustisches Signal abschalten	
7. PFLEGE DES GERÄTS	59
7.1 Allgemeine Warnungen	60
7.2 Zugriff auf das Gerät	60
7.3 Planmäßige Wartung	60
7.4 Regelmäßige Überprüfungen	61
7.5 Reparatur des Kältekreislaufs	61
8. AUSSERBETRIEBNAHME	64
8.1 Trennen des Geräts von den Anschlüssen	64
8.2 Entsorgung, Verwertung und Recycling	64
8.3 RAEE Richtlinie (nur UE)	
9. DIAGNOSE UND PROBLEMBEHANDLUNG	65
9.1 Fehlersuche	65
10 MASSZEICHNI INGEN	65

1. EINFÜHRUNG

1.1 Einleitende Informationen

Die partielle oder vollständige Vervielfältigung, Speicherung oder Übertragung dieses Dokuments in jeglicher Form und ohne die vorherige schriftliche Zustimmung des Herstellers, ist verboten.

Das Gerät, auf welches sich dieses Dokument bezieht, darf ausschließlich zu den dafür vorgesehenen Zwecken und gemäß den Anweisungen in diesem Handbuch verwendet werden.

Das Unternehmen haftet nicht für Ansprüche wegen Schäden an Personen, Tieren, materiellen Gütern oder Gegenständen aufgrund von unsachgemäßer Montage, Einstellung und Wartung oder unsachgemäßem Gebrauch. Eine Nutzung die nicht gemäß dem Handbuch erfolg ist untersagt.

Dieses Dokument soll nur Informationen liefern und bildet keinen Vertrag mit Dritten.

Das Unternehmen arbeitet kontinuierlich an der Weiterentwicklung und Verbesserung der Produkte und behält sich das Recht vor, Spezifikationen, Ausrüstungshinweise und Anweisungen bezüglich Gebrauch und Wartung jederzeit und ohne Ankündigung zu ändern.

1.2 Ziel und Inhalt des Handbuchs

Dieses Handbuch beinhaltet Informationen zur geeigneten Wahl des Geräts, dessen Installation, Gebrauch und Wartung. Sie wurden in Übereinstimmung mit den Gesetzen der Europäischen Union und gemäß den technischen Standards zum Ausfertigungsdatum des Handbuchs erstellt.

Das Handbuch enthält alle notwendigen Informationen, um eine Fehlanwendung des Geräts zu verhindern.

1.3 Aufbewahrung des Handbuchs

Das Handbuch muss an einem geeigneten Ort mit einfachem Zugang für Nutzer und Betreiber aufbewahrt werden, geschützt vor Staub und Feuchtigkeit.

Das Handbuch muss immer bei dem Gerät aufbewahrt und an jeden nachfolgenden Benutzer übertragen werden.

1.4 Aktualisierung des Handbuchs

Es wird empfohlen, das Handbuch regelmäßig mit der aktuellsten überarbeiteten Version zu vervollständigen. Wenn Updates an den Kunden gesendet werden, müssen diese in diesem Handbuch aufgenommen werden. Die aktuellsten Informationen bezüglich der Produkte können jederzeit von dem Hersteller zur Verfügung gestellt werden.

1.5 Anwendung des Handbuchs

Das Handbuch ist ein wesentlicher Bestandteil des Gerätes.

Um Unklarheiten und mögliche Risiken zu vermeiden müssen Nutzer oder Betreiber das Hanbuch vor jeder Arbeit an dem Gerät zu Rate ziehen. Dies betrifft vor allem Transport, Bedienung, Installation, Wartung oder Demontage.

Die Symbole, die in dieser Anleitung verwendet wurden (beschrieben in den folgenden Abschnitten), sollen Betreiber und Nutzer auf mögliche Risiken bei bestimmten Operationen aufmerksam machen.

1.6 Potentielle Risiken

Das Handbuch wurde entwickelt, um eine Gefährdung der Sicherheit der Menschen die mit dem Gerät arbeiten zu minimieren, trotzdem war es technisch nicht möglich alle Gefahrenquellen zu beseitigen. Es ist daher notwendig, folgende Anforderungen und Symbole zu beachten:

beachten:			
GEFAHRENQUELLE	POTENTIELLES RISIKO	ART DER VERLETZUN- GEN	VORSICHTSMAßNAHMEN
Wärmetauscher.	Kleine Stichwun- den.	Kontakt	Vermeiden Sie jeden Kontakt, Tragen Sie Handschuhe
Ventilator und Ventilator- schutzgitter.	Schnittverletzun- gen, Augenschä- den, Knochenbrü- che.	Einführen spitzer Gegen- ständen durch das Gitter während die Ventilatoren in Betrieb sind.	Führen Sie niemals Gegenstände durch die Schutz- gitter.
Interne Komponenten: Verdichter und Drucklei- tungen	Verbrennungen.	Kontakt	Vermeiden Sie jeden Kontakt, Tragen Sie Handschuhe.
Interne Komponenten: Elektrokabel und Metall- teile	Stromschlag, schwere Verbren- nungen.	Defekt in der Kabelisolie- rung oder stromführender Teile.	Angemessener Schutz von Stromkabeln, die korrekte Erdung aller Metallteile.
Bestandteile außerhalb des Gerätes: Gehäuse	Vergiftung, schwere Verbrennungen.	Feuer durch Kurzschluss oder Überhitzung der Zu- leitung zum externen Ge- rät.	Größe und Schutzsystem von Netzleitungen gemäß IEE-Vorschriften.
Niederdruck-Sicherheits- ventil.	Vergiftung, schwe- re Verbrennungen.	Hoher Verdampfungs- druck verursacht Kälte- mittelverlust während der Wartung.	Überprüfen Sie sorgfältig den Verdampfungsdruck während der Wartungsarbeiten. Verwenden Sie alle gesetzlich vorgeschriebenen persönlichen Schutzausrüstungen. Die Geräte müssen auch vor möglichen Gasaustritten aus dem Sicherheitsventil schützen. Die Entladung dieser Ventile ist darauf ausgerichtet, zu verhindern, dass sie Personen- oder Sachschäden verursachen.
Hochdruck-Sicherheits- ventil.	Vergiftung, schwe- re Verbrennungen, Hörverlust.	Die Aktivierung des Hoch- druck-Sicherheitsventils im geöffnetten Kältekreis- lauf.	Wenn möglich, öffnen Sie nicht das Kältekreislauf- Ventil, gründliche Überprüfung des Verflüssigungs- drucks; rechtlich vorgeschriebene persönliche Schut- zausrüstung ist zu tragen. Die Geräte müssen auch vor möglichen Gasaustritten aus dem Sicherheitsven- til schützen. Die Entladung dieser Ventile ist darauf ausgerichtet, zu verhindern, dass sie Personen- oder Sachschäden verursachen.
Gesamtes Gerät.	Feuer von außen.	Feuer aufgrund von Natur- katastrophen oder Ver- brennungen der Elemente in der Nähe des Gerätes.	Die notwendige Ausrüstung zur Brandbekämpfung ist vorzusehen.
Gesamtes Gerät.	Explosion, Ver- letzungen, Verbren- nungen, Vergiftung und Stromschläge aufgrund von Natur- katastrophen oder Erdbeben.	Beschädigungen am Gerät durch Naturkatastrophen oder Erdbeben.	Planen Sie vorbeugende Maßnahmen wie z. B. angemessene elektrische Schutzeinrichtungen des elektrischen Anschlusses ein und mechanische Schutzeinrichtungen (spezielle Verankerungen um seismischen Aktivitäten vorzubeugen).

1.7 Allgemeine Beschreibung der verwendeten Symbole

Sicherheitssymbole gemäß ISO 3864-2:

VERBOTEN

Ein schwarzes Symbol in einem roten Kreis mit einer roten Diagonalen zeigt an, dass diese Aktion nicht durchgeführt werden sollte.

WARNUNG

Eine schwarzes grafisches Symbol um ein gelbes Dreieck mit schwarzem Rand: zeigt Gefahr an.

HANDLUNGSBEDARF

Ein weißes Symbol in einem blauen Kreis zeigt an, dass Handlungsbedarf besteht um ein mögliches Risiko zu vermeiden.

Sicherheitssymbole gemäß ISO 3864-2:

Das grafische Symbol "Warnung" wird mit zusätzlichen Sicherheitsinformationen (Text oder andere Symbole) angezeigt.

1.8 Sicherheitssymbole

ALLGEMEINE RISIKOFAKTOREN

Beachten Sie alle Schilder/Hinweise neben den Piktogrammen. Die Nichteinhaltung der Anweisungen kann eine Gefahrensituation auslösen, die schädlich für den Benutzer sein kann.

ELEKTRISCHE GEFAHR

Beachten Sie alle Schilder/Hinweise neben den Piktogrammen.

Das Symbol warnt vor Komponenten des Geräts und Bedienschritte die in diesem Handbuch beschrieben werden und eine elektrische Gefahr darstellen könnten.

BEWEGLICHE TEILE

Das Symbol warnt vor beweglichen Teilen des Gerätes, die eine Gefahr darstellen könnten.

HEISSE OBERFLÄCHEN

Das Symbol warnt vor Komponenten mit hohen Oberflächentemperaturen.

SCHARFKANTIGE OBERFLÄCHEN

Das Symbol warnt vor Komponenten oder Teilen die Schnittwunden verursachen könnten.

ERDUNG

Das Symbol kennzeichnet Erdungspunkte der Einheit.

LESEN UND VERSTEHEN DER INSTRUKTIONEN

Es ist äußerst wichtig dass Sie vor der Arbeit an dem Gerät die Anweisungen gelesen und verstanden haben.

RECYCLEBARE MATERIALIEN

1.9 Beschränkungen und verbotene Nutzung

Das Gerät wurde ausschließlich für den in "Nutzungsbeschränkungen" beschriebenen Gebrauch konstruiert. Jede andere Art von Gebrauch ist aufgrund der möglichen Gefahr für den Nutzer oder Bediener untersagt.

Das Gerät ist nicht für den Einsatz in folgenden Umgebungen geeignet:

- in übermäßig staubigen oder explosionsgefährdeten Bereichen;
- wo Schwingungen und Vibrationen auftreten;
- · wo elektromagnetische Felder vorherrschen;
- · wo aggressive Atmosphärenbedingungen vorherrschen

1.10 Komponentenbeschreibung

Jede Einheit ist mit einem Typenschild ausgestattet, auf dem wichtige Informationen bezüglich des Geräts enthalten sind. Das Typenschild kann von folgender Abbildung abweichen, da dieses sich auf ein Standardgerät ohne Zubehör bezieht. Für alle elektrischen Daten die nicht auf dem Etikett stehen, muss der Schaltplan hinzugezogen werden. Ein Beispieletikett ist unten dargestellt:

Das Etikett sollte niemals vom Gerät entfernt werden.

2. SICHERHEIT

2.1 Warnung vor gefährlichen toxischen Substanzen

2.1.1 Art des Kältemittels: R410A

• Difluoromethane (HFC-32) 50% by weight CAS No.: 000075-10-5

Pentafluoroethane (HFC-125) 50% by weight CAS No.: 000354-33-6

2.1.2 Art des verwendeten Öls

Der Schmierstoff, der im Gerät verwendet wird, ist Polyester-Öl. Bitte entnehmen Sie diese Angaben dem Typenschild des Verdichters.

Weitere Informationen bezüglich des verwendeten Kältemittels und Öls entnehmen Sie den Sicherheitsdatenblättern des Herstellers.

Ökologische Informationen über die verwendeten Kältemittel.

UMWELTSCHUTZ: Lesen Sie die ökologischen Informationen und die folgenden Anweisungen sorgfältig durch.

2.1.3 Persistenz und Abbaubarkeit

Die verwendeten Kältemittel zersetzen sich in der unteren Atmosphäre (Troposphäre) relativ schnell. Die zerlegten Komponenten sind hochgradig flüchtig und in einer sehr geringen Konzentration vorhanden. Sie beeinflussen nicht den photochemischen Smog und gehören nicht zu den flüchtigen organischen Verbindungen VOC (wie in den Leitlinien des UNECE). Die Bestandteile der verwendeten Kältemittel zerstören nicht die Ozonschicht. Diese Stoffe werden nach dem Montrealer Protokoll (überarbeitet 1992) und Verordnungen EG Nr. geregelt. 2037/200 vom 29. Juni 2000.

2.1.4 Effekte austretender Substanzen

Substanzen die in die Atmosphäre austreten könnten, führen nicht zu einer langfristigen Kontamination.

2.1.5 Persönliche Schutzausrüstung

Tragen Sie Schutzkleidung und Handschuhe, schützen Sie Ihre Augen und das Gesicht.

2.1.6 Kältemittel

R410A

HFC-32 TWA 1000 ppm HFC-125 TWA 1000 ppm

2.2 Kältemittel Handhabung

Benutzer und Wartungspersonal müssen ausreichend über die möglichen Risiken des Umgangs mit potentiell toxischen Substanzen informiert werden. Das Nichtbeachten dieser Anweisungen kann Schäden an Personen oder am Gerät verursachen.

2.3 Vermeidung der Inhalation hoher Dampfkonzentrationen

Atmosphärische Konzentrationen von Kältemitteln müssen gering gehalten werden; auf einem Niveau unterhalb der MAK-Grenzwerte. Dämpfe sind schwerer als Luft und können gefährliche Konzentrationen in Bodennähe, wo keine Belüftung ist, bilden. Sorgen Sie immer für eine ausreichende Belüftung. Vermeiden Sie den Kontakt mit offenem Feuer und heißen Oberflächen, da dies giftige und reizende Zersetzungsprodukte bilden kann. Vermeiden Sie den Kontakt zwischen flüssigem Kältemittel und den Augen oder der Haut.

2.4 Vorgehensweise im Falle einer unbeabsichtigten Freisetzung von Kältemittel

Während der Reinigungsarbeiten ist für eine geeignete persönliche Schutzausrüstung (speziell Atemschutz) zu sorgen.

Wenn die Sicherheitsmaßnahmen erfüllt sind, kann mit der Abdichtung des Lecks begonnen werden. Bei einer kleinen Leckage mit ausreichender Belüftung, kann das Verdampfen des Kältemittels gewährleistet werden. Ist der Verlust beträchtlich, ist sicherzustellen das Maßnahmen ergriffen werden um den Raum ausreichend zu belüften.

Ausgelaufenes Material sollte mit Sand, Erde oder einem anderen geeigneten Material aufnommen werden.

Kältemittel darf nicht in die Kanalisation oder Abwasserleitungen eingeleitet werden, es könnten sich Gaswolken bilden.

2.5 Wichtige toxikologische Eigenschaften des verwendeten Kältemittels

2.5.1 Einatmen

Eine hohe atmosphärische Konzentration kann betäubend und zur Bewusstlosigkeit führen.

Eine längere Exposition kann zu Herzrhythmusstörungen und plötzlichem Tod führen.

Höhere Konzentrationen können zur Erstickung aufgrund des reduzierten Sauerstoffgehalts in der Atmosphäre führen.

2.5.2 Kontakt mit der Haut

Spritzer des Kältemittels können zu Erfrierungen führen. Da die Haut dies zum größten Teil absorbiert, ist es eher ungefährlich. Wiederholter oder längerer Kontakt kann der Haut die natürlichen Öle entziehen, was zu Trockenheit, Rißbildung und Dermatitis führen kann.

2.5.3 Kontakt mit den Augen

Flüssigkeitsspritzer können Erfrierungen verursachen.

2.5.4 Verschlucken

Obwohl höchst unwahrscheinlich, können Erfrierungen entstehen.

2.6 Erste-Hilfe-Maßnahmen

Halten Sie sich gewissenhaft an die unten stehenden Warnungen und Erste -Hilfe -Maßnahmen.

2.6.1 Einatmen

Bewegen Sie die Person weg von der Gefahrenquelle, halten sie die Person warm und lassen Sie ihn/sie sich ausruhen. Falls nötig Sauerstoff zuführen. Bei Atemstillstand sollte sofort mit der künstlichen Beatmung begonnen werden. Bei Herzstillstand sofort mit der Herzmassage beginnen. Ärztliche Hilfe anfordern.

2.6.2 Kontakt mit der Haut

Bei Kontakt mit der Haut sofort mit lauwarmen Wasser abspülen. Hautbereiche mit Wasser auftauen. Verunreinigte Kleidung entfernen. Kleidung kann im Fall einer Erfrierung auf der Haut haften bleiben. Wenn Reizungen, Schwellungen oder Blasen auftreten, einen Arzt aufsuchen.

2.6.3 Kontakt mit den Augen

Augen sofort für mindestens 10 Minuten mit sauberem Wasser ausspülen, dabei die Augenlider geöffnet halten. Ärztliche Hilfe anfordern.

2.6.4 Verschlucken

Nicht zum Erbrechen bringen. Ist die verletzte Person bei Bewusstsein , spülen Sie seinen / ihren Mund mit Wasser aus und reichen ihm / ihr ein Getränk von 200-300ml Wasser. Sofort ärztliche Hilfe anfordern.

2.6.5 Weitere medizinische Behandlung

Behandlen Sie die Symptome und führen Sie die ersten Hilfsmaßnahmen wie angezeigt durch. Verabreichen Sie kein Adrenalin oder ähnliche Medikamente (Gefahr von Herzrhythmusstörungen).

3. TECHNISCHE DATEN

3.1 Gerätebeschreibung

Die hocheffizienten LHA Wärmepumpen wurden speziell für den Einsatz in Fußbodenheizungssystemen oder Anwendungen, die eine maximale Effizienz beim Heizen benötigen, entwickelt. Sie wurden für den Heizbetrieb optimiert und können Wasser mit einer Temperatur von 60°C erzeugen und bei bis -20°C Umgebungstemperatur arbeiten.

Alle Versionen sind mit einem 4-Wege-Umschaltventil für die Abtauung des Luftwärmetauschers im Heizbetrieb ausgestattet. Die HH-Version ist für die Verwendung in Ländern geeignet, die Förderregelungen zugunsten für Heizungs-Wärmepumpentechnik haben. Die RV-Versionen sind auch in der Lage kaltes Wasser zu erzeugen. Die HH Versionen sind Werkseitig nur für den Heizbetrieb eingestellt und sind für den Kühlbetrieb gesperrt.

Der Geräuschpegel ist extrem niedrig, dank eines speziellen flexiblen Antivibrationssystem, welches eine Lärmreduzierung von ungefähr 10-12 dB(A) erlaubt (Optional).

3.1.1 Rahmen

Alle Geräte sind aus feuerverzinktem Stahlblech gefertigt, lackiert mit Polyurethan-Pulver und eingebrannt bei 180°C, um maximalen Schutz gegen Korrosion zu bieten. Der Rahmen ist selbsttragend mit abnehmbaren Paneelen. Alle verwendeten Schrauben und Nieten sind aus rostfreiem Stahl hergestellt. Die Standardfarbe der Geräte ist RAL 9018.

3.1.2 Kältekreislauf

Die Kältemittelfüllung in den Geräten ist R410A. Der Kältekreislauf ist mit primär auf dem internationalen Markt erhältlichen Komponenten ausgestattet und erfüllt somit die ISO 97/23. Jeder Kältekreislauf beinhaltet: Schauglas; Filtertrockner, Thermisches-Expansionsventile mit externem Ausgleich, Schrader-Ventil für Wartung und zur Kontrolle, Drucksicherheits-Einrichtung nach PED Vorschriften).

3.1.3 Verdichter

Die Scroll-Verdichter sind spezielle High Performance Scrolltypen, die speziell mit einer sehr hohen Effizienz für Kältekreisläufe mit sehr niedrigen Umgebungstemperaturen arbeiten. Alle Grössen sind mit Tandem-Verdichter ausgestattet. Die Verdichter sind mit Kurbelwannenheizung, sowie einer Motorschutzeinrichtung durch eingebauten Klixon versehen. Sie befinden sich in einem schalldichten Gehäuse und sind vom Luftstrom getrennt, was die Schallemission reduziert. Die Kurbelwannenheizung ist im Stand-By immer geschaltet. Die Inspektion erfolgt über die Front-Paneele und ermöglicht auch die Wartung im Betrieb des Gerätes.

3.1.4 Quellwärmetauscher

Der Quell-Wärmetauscher besteht aus einem Register mit Kupferrohren und Aluminiumrippen. Die Dimension der Kupferrohre ist 3/8" mit Aluminiumlamellen mit 0,1 mm Wandstärke. Die Aluminiumlamellen sind mechanisch mit den Kupferrohren verbunden und verbessern damit den Wärmeaustauschfaktor. Diese Geometrie des Quell- Wärmetauschers hat luftseitig einen niedrigen Druckverlust bei geringen Ventilatordrehzahlen (Verringerung der Geräuschentwicklung –Low Noise). Alle Wärmetauscher sind mit einer wasserführenden Beschichtung ausgestattet um ein rasches Abfließen des Kondensats zu erreichen.

3.1.5 Nutzerwärmetauscher

Die schweißgelöteten Platten des Nutzer-Wärmetauschers sind aus Edelstahl AISI 316. Der Einsatz dieser Platten erlaubt eine massive Reduzierung der Kältemittelfüllung sowie kleinerer Abmessungen der Gesamtanlage gegenüber der traditionellen Rohr-bündelbauweise. Der Nutzer-Wärmetauscher ist werksseitig mit einer geschäumt, zellgeschlossener Isolierung versehen, die mit einer Frostschutzheizung (Optional) aus gerüstet werden kann. Jeder Verdampfer ist mit einem Temperaturfühler als Frost-schutzwächter ausgestattet.

3.1.6 Ventilatoren

Die Ventilatoren sind Axialläufer mit tragflächengeformten Aluminiumrotorblättern. Sie sind statisch und dynamisch gewuchtet und mit einem Unfallschutzgitter ausgerüstet nach EN 60335. Die Ventilatoren sind schwingungsgedämpft mit Antivibrations-Gummidämpfer mit dem Gehäuse montiert. Die Ventilatoren (LS versionen) sind mit 6-Polmotoren (900 min-1) installiert, die XL Ausführung ist mit 8 Polmotoren ausgestattet (8-Polmotoren, 600 min-1). Alle Geräte sind im Standard mit einer Verdampfer/Verflüssiger Regelung über Drucktransmitter ausgestattet. Die direktangetriebenen Motoren sind mit einer Motorschutzeinrichtung durch eingebauten Temperaturregler versehen. Schutzart des Motors ist IP 54.

3.1.7 Mikroprozessor

Die Geräte sind standardmäßig mit Mikroprozessoren ausgestattet. Der Mikroprozessor steuert folgende Funktionen: Einstellung der Wassertemperatur, Frostschutz, Taktung der Verdichter, Automatische Einschaltfolge der Verdichter, Alarm-Reset, Sammelalarmkontakt für Fernsignalisierung, LED-Anzeigen für Alarme und Betriebsmeldung. Der Mikroprozessor regelt ebenfalls die automatische Abtauung (Winterbetrieb/Heizbetrieb bei niedrigen Außentemperaturen), sowie Sommer/Winter Change Over (nur für RV-Versionen). Die Kontrolle ist auch im Stande das Programm der Legionellenschaltung zu aktivieren, Integration mit anderen thermischen Quellen (elektrische Heizgeräte), Solarkollektoren usw., Kontrolle und Management von modulierenden Ventilen und der Brauchwasserladepumpe zu schalten. Auf Nachfrage kann jeder Mikroprozessor mit einem Gebäudemanagementsystem verbunden werden. Unsere technische Abteilung stu-

diert in Verbindung mit unseren Kunden unterschiedliche Lösungen für den Einsatzbereich MODBUS.

3.1.8 Elektrische schalttafel

Die elektrische Schalttafel ist in Übereinstimmung Elektromagnetischen Normen CEE EN60204 hergestellt. Um an die Schalttafel zu gelangen muss der Hauptschalter in Stellung OFF gebracht werden damit der Schaltschrank geöffnet werden kann. Die Schutzart der Schalttafel ist IP55. Alle Geräte sind mit folgendem im Standard ausgerüstet: Phasenüberwachungsrelais die den Verdichter abschalten wenn eine Phase nicht korrekt arbeitet (Scrollverdichter können dann Rückwärts anfahren und Defekt gehen). Ebenfalls sind im Standard enthalten: Hauptschalter, Thermokontakte (als Schutz für Pumpen und Ventilatoren), Sicherung für Verdichter, Motorschutzschalter, Verdichterschütze, Ventilatorenschütze, Pumpenschütze. Die Hauptplatine ist mit potentialfreien Kontak ten für eine externe Freigabe, Sommer- und Winterumschaltung (nur Wärmepumpen) und Sammelalarmmeldung ausgestattet.

3.1.9 Steuer- und Schutzeinrichtung

Alle Geräte sind mit folgenden Steuerungs und Sicherheitstechnischen Einrichtungen ausgestattet: Temperaturfühler am Wassereintritt zur Regelung der Wassertemperatur, Frostschutzfühler auf der Wasseraustrittseite, Warmwasser Vor- und Rücklauftemperaturfühler (nur P2S-Version), automatische resetbarer Hochdruckschalter im Kältemittelkreislauf, Niederdruckschalter mit automatischem Reset, Hochducksicherheitsventil im Kältemittelkreislauf, Thermischer Überlastschutz für Kompressor und Ventilator, Strömungswächter. Alle Versionen werden mit einem Remote mit Gesundheitssonden und Benutzern Kit zur Aktivierung der "Energiespar"-Funktion geliefert. Nach Wahl des Kunden können diese Sonden im Systemtank installiert werden, um die Pumpen abzuschalten, wenn die eingestellte Solltemperatur erreicht ist oder wenn sich das Gerät im Stand-by-Modus befindet, wodurch der Stromverbrauch des Systems selbst reduziert wird.

3.1.10 Strömungswächter Nutzer

Der Strömungswächter wird serienmäßig bei allen Geräten installiert und unterbricht den Betrieb des Gerätes bei einem nicht normalen Wasserfluss im System. Der Strömungswächter funktioniert mit Paddel welches im Wasserstrom angebracht ist, kombiniert mit zwei permanenten Magneten welche die Menge des durchströmenden Wassers messen und in Funktion der gemessenen Parameter den Betrieb des Gerätes unterbricht oder nicht.

3.2 Andere Versionen

3.2.1 Version HH

Nur zum Heizen. Kaltwassererzeugung steht nicht zur Verfügung

3.2.2 Version RV

This version uses 2 hydraulic connections and is able to produce hot water in winter and cold water in summer. The unit is combined with a 2-pipe system.

3.2.3 SA Version

Standard efficiency version, according to ERP2018 standard. Unit equipped with AC fans.

3.2.4 SE Version

Standard efficiency version, according to ERP2018 standard. Unit equipped with EC fans.

3.2.5 HA Version

High efficiency version, according to ERP2018 standard. Unit equipped with AC fans.

3.2.6 HE Version

High efficiency version, according to ERP2018 standard. Unit equipped with EC fans.

3.2.7 Version LS

Diese Version beinhaltet die gesamte akkustische Isolierung der Anlage (Kompressor + Wärmetauscher) mit Kompressormänteln und Isoliermaterial mit einer sehr hohen Dichte, sowie einer schweren Bitumenschicht.

3.2.8 Extra leise Ausführung HA/XL HE/XL

Units in HA/XL, HE/XL Extra leise Ausführung sind serienmäßig mit der neuesten "Schweberahmen" Technologie ausgestattet. Diese Technologie trennt vollständig die Verdichter von dem Hauptgehäuse, damit die Vibrationen und die Geräusche der Verdichter, nahezu beseitigt werden. Der "geräuschreduzierung" besteht aus einem speziellen Antivibrations und einem akustischen Dämpfungssystem.

Die Verdichter sind außerdem mit Schallschutzhauben zur Reduzierung der Geräusche ausgestattet. Die Grundplatte von dem "schwimmenden Rahmen" ist vom Tragrahmen des Gehäuses durch Weichstahlfedern zusätzlich getrennt. Innerhalb des "Schweberahmens"

sind die Verdichter zusätzlich mit gummielastischen Füßen auf der schwimmenden Grundplatte montiert. Das schwimmende Gehäuse ist aus verzinkten Stahlsandwichpaneelen hergestellt. Die Paneele sind mit einem 20 mm dicken Schallschutz, mit hoher Dichte (4 kg/m²) bestehend aus Mineralwolle, von Innen isoliert. Der gesamte "Schweberahmen" dient als Antivibrationsschutz und als zusätzliche Schalldämmung. Die Kältemittelleitungen der Verdichter von und zum Kältekreislauf sind mit flexiblen Leitungen, sogenannten "Anakondas" verbunden. Ebenfalls werden die hydraulischen Anschlüsse zum Plattenwärmetauscher auch mit flexiblen Leitungen angeschlossen. Die Kombination dieser oben genannten Systeme führt zu einer Gesamtlärmreduzierung im Bereich von 10-12 dB (A).

3.2.9 Version P2U

Das 2-Leiter-System kann warmes Wasser zum Heizen oder kaltes Wasser zum Kühlen produzieren. Der Kältekreislauf wird dabei um geschalten, das Aufheizen von Trinkwasser ist nicht möglich.

3.2.10 Version P2S

Diese Version kann zusätzlich zur Produktion von warmem Wasser zum Heizen oder kaltes Wasser zum Kühlen auch das Trinkwasser (TW) aufheizen. Drei Temperaturen (Heizen und TW) / (Kühlen und TW) sind möglich. Der Regler schaltet die externen 3-Wege-Ventile um. Priorität hat immer das Trinkwasser auch wenn sich die Anlage im Kühlbetrieb befindet, der Kältekreislauf wird beim Kühlbetrieb automatisch umgeschalten.

3.3 Zubehör

3.3.1 Kondensatwanne mit Frostschutzheizung (BRCA)

Wird unter dem Lamellenwärmetauscher installiert und dient dem Zweck das während des Heizbetriebs erzeugte Kondensat zu sammeln. Ausgestattet mit einer Begleitheizung um eine Eisbildung in niedrigen Umgebungstemperaturen zu verhindern. Dieses Zubehör kann nur im Werk montiert werden.

3.3.2 Frostschutzausstattung (RAEV2, RAEV4)

Das selbst heizende Heizband wird um die interne Verrohrung und um den Nutzerwärmetauscher (P2U-P2S) verlegt und vom Mikroprozessor gesteuert. Bei der (P4U-P4S) Version wird ein zusätzliches Heizband um die interne Verrohrung und um den zweiten Wärmetauscher verlegt und vom Mikroprozessor gesteuert.

3.3.3 Gummi Schwingungsdämpfer (KAVG)

Der mitgelieferte Satz wird an der Bodenplatte in die vorhandenen Gewindebuchsen eingeschraubt. Damit können kleinere Unebenheiten ausgleichen werden. Zudem werden Schwingungen und Geräusche am Gebäude verringert

3.3.4 RS485 Serielle Schnittstellenkarte Modbus-Protokoll (INSE)

Diese Kontroller-Karte ermöglicht es dem Kontroller mit anderen Geräten in einem BMS Modbus-Protokoll zu kommunizieren.

3.3.5 Hocheffiziente E.C. Axialventilatoren (VECE)

Hocheffiziente EC Axialventilatoren mit bürstenlosen DC Elektromotoren ausgestattet, elektronisch kommutierten (EC-Motoren) gewähren die höchste Energie-Effizienz-Klasse (EFF1), nach den neuesten EU-Vorgaben, mit dem Ergebnis des geringeren Energieverbrauchs der Lüftermotoren (mit 25-30% Einsparung pro Jahr) und der Geräuschunterdrückung durch die neue ultra-effiziente Profilierung der Schau-felblätter.

3.3.6 Elektronisches Expansionsventil (VTEE)

Das elektronische Expansionsventil ermöglicht eine maximale Leistung. Diese wird mittels der Maximierung des Verdampfer-Wärmeaustauschs und der Minimierung der Reaktionszeit gegenüber Lastschwankungen und der Optimierung der Überhitzungswärme erreicht. Es wird für den Einsatz in Systemen, in denen große Lastschwankungen auftreten, empfohlen.

3.3.7 Elektronischer Softstarter (DSSE)

Diese Ausführung reduziert den Startstrom um 40% des normalen. Diese Ausführung ist werksseitig montiert.

3.3.8 Fernsteuereinrichtung (PCRL)

Dieses Panel kann bis zu 50m (maximal) vom Gerät entfernt montiert werden und repliziert alle Steuerfunktionen.

3.3.9 Hydraulik Frostschutz Kit (KP)

Dieses Ausstattung, verwendet auf mit einer Hydraulik-Ausstattung ausgerüstete Geräte, umfasst ein "selbst-heizend" elektrisches Kabel,

das um den Benutzer herum und Warmwasser Wärmetauscher (P4 nur auf Anteile), der Wasserkreislauf-Rohrleitung gewickelt wird, und beinhaltet ein gepanzertes elektrisches Heizgerät, das im Inneren des Wassertanks eingebaut ist. Diese Vorrichtung wird durch den Mikroprozessor gesteuert.

3.3.10 Geräte mit integrierter Hydraulik-Ausstattung, Tank & 1 Pumpe (A1ZZU)

Die Anlagen beinhalten: Pufferspeicher in verschiedenen Größen (Modellabhängig) werkseitig isoliert mit flexiblem engem Zellmaterial und vorbereitet für den Einbau einer Frostschutz-Ausstattung (Option) und 1 Wasserpumpe in zentrifugaler Bauform, geeignet für Kaltwasser-Betrieb. Die Pumpe wird direkt durch den Mikroprozessor gesteuert. Der Speicher ist auf der Wasseraustrittsseite installiert um Schwankungen der Wassertemperatur aufgrund des "Takten" des Verdichters unter Teillastbedingungen zu minimieren. Der Hydraulikkreislauf beinhaltet außerdem ein Ausdehnungsgefäß, ein Überdruckventil und System-Absperrventile mit Anschlussstücken.

3.3.11 Geräte mit integrierter Hydraulik-Ausstattung, Tank & 2 Pumpen (A2ZZU)

Die Anlagen beinhalten: Pufferspeicher in verschiedenen Größen (Modellabhängig) werkseitig isoliert mit flexiblem engem Zellmaterial und vorbereitet für den Einbau einer Frostschutz-Ausstattung (Option) und 2 Wasserpumpen in Betrieb + Stand-by in zentrifugaler Bauform, geeignet für Kaltwasser-Betrieb. Die Pumpe wird direkt durch den Mikroprozessor gesteuert. Der Speicher ist auf der Wasseraustrittsseite installiert um Schwankungen der Wassertemperatur aufgrund des "Takten" des Verdichters unter Teillastbedingungen zu minimieren. Der Hydraulikkreislauf beinhaltet außerdem ein Ausdehnungsgefäß, ein Überdruckventil und System-Absperrventile mit Anschlussstücken.

3.3.12 Hydraulik Kit mit 1 Pumpe ohne Tank - Nutzer Seite (A1NTU)

Die Anlagen beinhalten: 1 Wasserpumpein Überdruckventil und System-Absperrventile mit Anschlussstücken (falls verlangt durch PED-Normen).

3.3.13 Hydraulik Kit mit 2 Pumpen ohne Tank – Nutzer Seite (A2NTU)

Die Anlagen beinhalten: 2 Wasserpumpen, ein Überdruckventil und System-Absperrventile mit Anschlussstücken (falls verlangt durch PED- Normen).

3.3.14 Kaskaden Regelung über (SGRS)

Inteligentes Regelungssystem zum Gerätemanagement mehrerer Anlagen. Geliefert in einem Aufputzverteiler zur Montage im Technikraum. Die Steuerung der Anlagen erfolgt über Modbus RS485.

3.3.15 Ventilatordrehzahlregelung (DCCF)

Arbeitet das Gerät unterhalb von 20°C Außentemperatur, ist es erforderlich, dass das Gerät mit einer Ventilatordrehzahlregelung ausgestattet ist. Diese Ausstattung ermöglicht einen Betrieb bei niedrigen Außentemperaturen, hierbei wird die Verflüssigerluftmenge reduziert, was in der Parametrierung im Regler hinterlegt ist. Gleichzeitig wird aufgrund tieferer Nachttemperaturen, sowie in der kälteren Jahreszeit der Schallpegel reduziert. Die Ventilatordrehzahlregelung ist eine Werkseinstellung und darf nicht modifiziert werden.

3.4 Technische Daten

Nur zum Heizen (HH)

SA/LS/HH - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
	kW							
Heizleistung (EN14511) (1)		211,8	226,1	258,8	330,6	357,4	393,3	431,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	58,2	64,8	71,9	85,2	93,8	103,0	116,4
COP (EN14511) (1)	W/W	3,64	3,49	3,60	3,88	3,81	3,82	3,71
Energieklasse (2)		A+						
SCOP ⁽²⁾	kWh/kWh	3,25	3,23	3,26	3,25	3,27	3,24	3,34
ηs,h ⁽²⁾	%	127,1	126,1	127,2	127,0	127,8	126,4	130,4
Schalleistungspegel (3)	dB (A)	87	89	90	90	90	92	93
Schalldruckpegel (4)	dB (A)	55	57	58	58	58	60	61
SE/LS/HH - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	213,2	227,7	261,7	330,6	357,5	396,6	435,4
Gesamtleistungsaufnahme (EN14511) (1)	kW	57,9	65,1	71,9	82,9	92,1	102,7	116,7
COP (EN14511) (1)	W/W	3,68	3,50	3,64	3,99	3,88	3,86	3,73
Energieklasse (2)		A+						
SCOP (2)	kWh/kWh	3,54	3,49	3,46	3,52	3,57	3,63	3,58
ηs,h ⁽²⁾	%	138,6	136,5	135,2	137,9	139,6	142,3	140,0
Schalleistungspegel (3)	dB (A)	87	89	90	90	90	92	93
Schalldruckpegel (4)	dB (A)	55	57	58	58	58	60	61
Versorgungsspannung	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Verdichter / Circuits	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ventilatoren	n°	4	4	4	6	6	6	8
Kältemittel		R410A						
Kältemittelbefüllung	Kg	45,0	54,0	54,0	72,0	80,0	90,0	100,0
Globalen Treibhauspotenzial (GWP)	3	2088	2088	2088	2088	2088	2088	2088
CO ₂ Äquivalent	t	93,96	112,75	112,75	150,33	197,04	187,92	208,80
Pufferspeicher	ì	500	500	500	1000	1000	1000	1000
. unoropoione.	•	000	000	000	.000			

Nur zum Heizen (HH)

HA/LS/HH - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	228,6	270,2	295,6	335,0	363,1	404,5	458,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	56,7	67,0	74,1	83,5	90,3	105,1	116,4
COP (EN14511) (1)	W/W	4,03	4,03	3,99	4,01	4,02	3,85	3,94
Energieklasse (2)		A+						
SCOP (2)	kWh/kWh	3,65	3,63	3,65	3,66	3,73	3,61	3,63
ηs,h ⁽²⁾	%	143,1	142,0	142,9	143,3	146,1	141,4	142,0
Schalleistungspegel (3)	dB (A)	88	89	90	90	90	92	92
Schalldruckpegel (4)	dB (A)	56	57	58	58	58	60	60
HE/LS/HH - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	229,4	271,4	296,7	339,0	364,9	407,0	463,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	55,8	63,9	71,5	83,7	88,8	104,1	115,1
COP (EN14511) (1)	W/W	4,11	4,25	4,15	4,05	4,11	3,91	4,03
Energieklasse (2)		A++						
SCOP (2)	kWh/kWh	3,83	3,85	3,83	3,91	3,89	3,87	3,86
ηs,h ⁽²⁾	%	150,2	151,1	150,3	153,5	152,4	151,9	151,5
Schalleistungspegel (3)	dB (A)	88	89	90	90	90	92	92
Schalldruckpegel (4)	dB (A)	56	57	58	58	58	60	60
Versorgungsspannung	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Verdichter / Circuits	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ventilatoren	n°	4	6	6	6	6	8	8
Kältemittel		R410A						
Kältemittelbefüllung	Kg	60,0	72,0	72,0	72,0	90,0	90,0	100,0
Globalen Treibhauspotenzial (GWP)		2088	2088	2088	2088	2088	2088	2088
CO ₂ Äquivalent	t	125,28	150,33	150,33	150,33	187,92	187,92	208,80
Pufferspeicher	1	500	500	500	1000	1000	1000	1000

Referenzdatenauslegung bei folgenden Bedingungen:

- (1) Heizen: Außenlufttemperatur. 7°C DB, 6°C WB, Wassertemperatur. 30/35°C.
- (2) Durchschnittliche Bedingungen, niedrige Temperatur, variabel Reg EU 811/2013
- (3) Schalleistungspegel im freien Feld kalkuliert gem. ISO 3744.
- (4) Schalldruckpegel in 10 m Entfernung im freien Feld unter Berücksichtigung ISO 3744.

Die Kältemitteldaten können sich ohne Vorankündigung ändern. Daher ist es notwendig, sich immer auf das silberne Etikett auf dem Gerät zu beziehen.

SA/LS/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	221,3	226,1	258,8	330,6	357,4	393,3	431,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	58,2	64,8	71,9	85,2	93,8	103,0	116,4
COP (EN14511) (1)	W/W	3,80	3,49	3,60	3,88	3,81	3,82	3,71
Energieklasse (2)		Á+						
SCOP (2)	kWh/kWh	3,25	3,23	3,26	3,25	3,27	3,24	3,34
ηs,h ⁽²⁾	%	127,1	126,1	127,2	127,0	127,8	126,4	130,4
Kälteleistung (EN14511) (3)	kW	192,3	210,8	231,8	286,3	312,9	349,4	401,8
Gesamtleistungsaufnahme (EN14511) (3)	kW	76.0	87.5	97,8	106,0	121,8	138,1	153,4
EER (EN14511) (3)	W/W	2,53	2,41	2,37	2,70	2,57	2,53	2,62
Schalleistungspegel (4)	dB (A)	87	89	90	90	90	92	93
Schalldruckpegel (5)	dB (A)	55	57	58	58	58	60	61
SE/LS/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	220,8	227,7	261,7	330,6	357,5	396,6	447,9
Gesamtleistungsaufnahme (EN14511) (1)	kW	57,9	65,1	71,9	82,9	92,1	102,7	116,7
COP (EN14511) (1)	W/W	3,81	3,50	3,64	3,99	3,88	3,86	3,84
Energieklasse (2)		A+						
SCOP (2)	kWh/kWh	3,54	3,49	3,46	3,52	3,57	3,63	3,58
ղs,h ⁽²⁾	%	138,6	136,5	135,2	137,9	139,6	142,3	140,0
Kälteleistung (EN14511) (3)	kW	195,8	212,1	233,3	289,3	321,1	357,3	408,0
Gesamtleistungsaufnahme (EN14511) (3)	kW	74,4	86.9	96,8	104,8	118,1	135,9	150,0
EER (EN14511) (3)	W/W	2,63	2,44	2,41	2,76	2,72	2,63	2,72
Schalleistungspegel (4)	dB (A)	87	89	90	90	90	92	93
Schalldruckpegel (5)	dB (A)	55	57	58	58	58	60	61
Versorgungsspannung	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Verdichter / Circuits	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ventilatoren	n°	4	4	4	6	6	6	8
Kältemittel		R410A						
Kältemittelbefüllung	Kg	45,0	54,0	54,0	72,0	80,0	90,0	100,0
Globalen Treibhauspotenzial (GWP)	, , , , , , , , , , , , , , , , , , ,	2088	2088	2088	2088	2088	2088	2088
CO, Äquivalent	t	93,96	112,75	112,75	150,33	167,04	187,92	208,80
Pufferspeicher	İ	500	500	500	1000	1000	1000	1000

Reversibel Heizen oder Kühlen durch (RV)

HA/LS/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	228,6	270,2	295,6	335,0	363,1	404,5	458,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	56,7	67,0	74,1	83,5	90,3	105,1	116,4
COP (EN14511) (1)	W/W	4,03	4,03	3,99	4,01	4,02	3,85	3,94
Energieklasse (2)		A+						
SCOP (2)	kWh/kWh	3,65	3,63	3,65	3,66	3,73	3,61	3,63
ηs,h ⁽²⁾	%	143,1	142,0	142,9	143,3	146,1	141,4	142,0
Kälteleistung (EN14511) (3)	kW	197,4	230,1	257,2	288,2	325,6	366,0	405,0
Gesamtleistungsaufnahme (EN14511) (3)	kW	73,1	81,9	91,5	105,6	116,7	136,1	155,2
EER (EN14511) (3)	W/W	2,70	2,81	2,81	2,73	2,79	2,69	2,61
Schalleistungspegel (4)	dB (A)	88	89	90	90	90	92	92
Schalldruckpegel (5)	dB (A)	56	57	58	58	58	60	60
HE/LS/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	229,4	271,4	296,7	339,0	364,9	407,0	463,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	55,8	63,9	71,5	83,7	88,8	104,1	115,1
COP (EN14511) (1)	W/W	4,11	4,25	4,15	4,05	4,11	3,91	4,03
Energieklasse (2)		A++						
SCOP (2)	kWh/kWh	3,83	3,85	3,83	3,91	3,89	3,87	3,86
ηs,h ⁽²⁾	%	150,2	151,1	150,3	153,5	152,4	151,9	151,5
Kälteleistung (EN14511) (3)	kW	198,5	231,0	259,7	289,4	322,6	368,5	416,0
Gesamtleistungsaufnahme (EN14511) (3)	kW	72,7	80,5	89,2	105,2	118,2	135,0	154,6
EER (EN14511) (3)	W/W	2,73	2,87	2,91	2,75	2,73	2,73	2,69
Schalleistungspegel (4)	dB (A)	88	89	90	90	90	92	92
Schalldruckpegel (5)	dB (A)	56	57	58	58	58	60	60
Versorgungsspannung	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Verdichter / Circuits	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ventilatoren	n°	4	6	6	6	6	8	8
Kältemittel		R410A						
Kältemittelbefüllung	Kg	60,0	72,0	72,0	72,0	90,0	90,0	100,0
Globalen Treibhauspotenzial (GWP)		2088	2088	2088	2088	2088	2088	2088
CO ₂ Äquivalent	t	125,28	150,33	150,33	150,33	187,92	187,92	208,80
Pufferspeicher	1	1000	1000	1000	1000	1000	1000	1000

Referenzdatenauslegung bei folgenden Bedingungen:

Die Kältemitteldaten können sich ohne Vorankündigung ändern. Daher ist es notwendig, sich immer auf das silberne Etikett auf dem Gerät zu beziehen.

⁽¹⁾ Heizen: Außenlufttemperatur. 7°C DB, 6°C WB, Wassertemperatur 30/35°C.

⁽²⁾ Durchschnittliche Bedingungen, niedrige Temperatur, variabel - Reg EU 811/2013

⁽³⁾ Kühlen: Außenlufttemperatur. 35°C, Wassertemperatur 12/7°C

⁽⁴⁾ Schalleistungspegel $\,$ im freien Feld kalkuliert gem. ISO 3744.

⁽⁵⁾ Schalldruckpegel in 10 m Entfernung im freien Feld unter Berücksichtigung ISO 3744.

Reversibel Heizen oder Kühlen durch (RV)

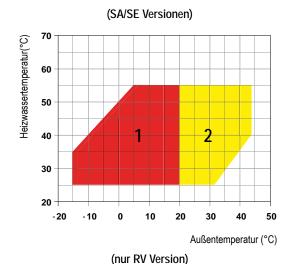
HA/XL/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	221,2	265,0	287,3	317,0	349,0	389,3	439,8
Gesamtleistungsaufnahme (EN14511) (1)	kW	54,0	62,6	69,7	78,3	85,5	97,8	109,1
COP (EN14511) (1)	W/W	4,10	4,23	4,12	4,05	4,08	3,98	4,03
Energieklasse (2)		A+	A+	A+	A+	A++	A++	A+
SCOP (2)	kWh/kWh	3,74	3,79	3,78	3,82	3,88	3,83	3,81
ηs,h ⁽²⁾	%	146,5	148,6	148,2	149,8	152,0	150,3	149,2
Kälteleistung (EN14511) (3)	kW	190,3	223,6	245,3	275,7	306,0	353,1	381,9
Gesamtleistungsaufnahme (EN14511) (3)	kW	73,8	80,1	91,5	106,4	120,5	135,8	155,9
EER (EN14511) (3)	W/W	2,58	2,79	2,68	2,59	2,54	2,60	2,45
Schalleistungspegel (4)	dB (A)	81	83	84	84	84	86	87
Schalldruckpegel (5)	dB (A)	49	51	52	52	52	54	55
HE/XL/RV - P2S/P2U		2504	3004	3204	3504	4004	4504	5004
Heizleistung (EN14511) (1)	kW	220,5	264,9	287,2	317,0	348,5	407,2	441,7
Gesamtleistungsaufnahme (EN14511) (1)	kW	53,0	60,9	68,2	77,1	84,6	97,2	108,0
COP (EN14511) (1)	W/W	4,16	4,35	4,21	4,11	4,12	4,19	4,09
Energieklasse (2)		A++						
SCOP (2)	kWh/kWh	3,84	3,97	3,92	3,96	3,97	3,97	3,91
ηs,h ⁽²⁾	%	150,4	155,9	153,8	155,5	155,9	155,8	153,5
Kälteleistung (EN14511) (3)	kW	198,5	237,9	267,5	289,4	322,6	368,5	406,9
Gesamtleistungsaufnahme (EN14511) (3)	kW	72,7	80,5	89,2	105,2	118,2	135,0	151,3
EER (EN14511) (3)	W/W	2,73	2,96	3,00	2,75	2,73	2,73	2,69
Schalleistungspegel (4)	dB (A)	81	82	83	84	84	86	87
Schalldruckpegel (5)	dB (A)	49	50	51	52	52	54	55
Versorgungsspannung	V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Verdichter / Circuits	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ventilatoren	n°	4	6	6	6	6	8	8
Kältemittel		R410A						
Kältemittelbefüllung	Kg	60,0	72,0	72,0	72,0	90,0	90,0	100,0
Globalen Treibhauspotenzial (GWP)		2088	2088	2088	2088	2088	2088	2088
CO ₂ Äquivalent	t	125,28	150,33	150,33	150,33	187,92	187,92	208,80
Pufferspeicher	1	1000	1000	1000	1000	1000	1000	1000

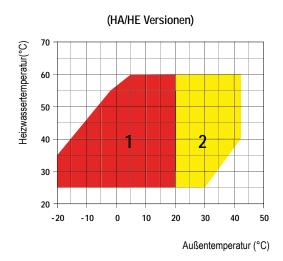
Referenzdatenauslegung bei folgenden Bedingungen:

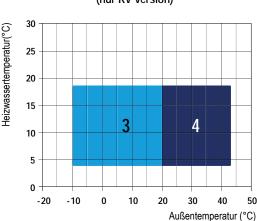
Die Kältemitteldaten können sich ohne Vorankündigung ändern. Daher ist es notwendig, sich immer auf das silberne Etikett auf dem Gerät zu beziehen.

⁽¹⁾ Heizen: Außenlufttemperatur. 7°C DB, 6°C WB, Wassertemperatur 30/35°C.

⁽²⁾ Durchschnittliche Bedingungen, niedrige Temperatur, variabel - Reg EU 811/2013


⁽³⁾ Kühlen: Außenlufttemperatur. 35°C, Wassertemperatur 12/7°C


⁽⁴⁾ Schalleistungspegel im freien Feld kalkuliert gem. ISO 3744.


⁽⁵⁾ Schalldruckpegel in 10 m Entfernung im freien Feld unter Berücksichtigung ISO 3744.

3.5 Einsatzgrenzen

- 2 Heizmodus mit Verflüssigerdruckregelung (DCCF)
- 3 Kühlmodus mit Verflüssigerdruckregelung (DCCF)
- 4 Kühlmodus

3.5.1 Wasserdurchfluss Nutzer Wärmetauscher

Der Nennvolumenstrom bezieht sich auf ein ΔT von 5 Grad Celsius.

Der maximal zulässige Volumenstrom entspricht 3 Grad Celsius. Höhere Volumenströme würden zu starken Druckverlusten führen und können den Verdampfer beschädigen.

Der Mindestwasserdurchsatz bei 8 Grad.

Geringere Volumenströme würden zu niedrige Verdampfungstemperaturen bewirken, bei denen die Sicherheitseinrichtungen auslösen und das Gerät abschalten.

3.5.2 Wassertemperatur (Heizbetrieb)

Beim Heizbetrieb darf die Temperatur nicht unter 30°C sein.

Tiefere Werte führen zum falschen Betrieb des Verdichters und dadurch können Störungen entstehen.

Die maximal erlaubte Temperatur beträgt 55°C fur Ausführungen SA/SE und 60°C fur Ausführungen HA/HE. Darüber liegende Werte gefährden die Sicherheit und verhindern die Funktion und Lebensdauer der Einheit.

3.5.3 Wassertemperatur (Kühlbetrieb nur RV)

Die minimale Austrittstemperatur beträgt 4°C. Sollten tiefere Temperaturen benötigt werden muss die Einheit anders produziert werden.

Dies muss dann im Vorfeld mit der technischen Abteilung und vor der Produktion geklärt werden.

Die maximale Austrittstemperatur beträgt 18°C.

3.5.4 Umgebungslufttemperaturen

Die Geräte sind so konzipiert und hergestellt, um im Heizbetrieb mit Lufttemperaturen von -20°C bis +43°C zu arbeiten. Im Kühlbetrieb können die Geräte mit Lufttemperaturen von 43°C bis zu -10°C betrieben werden.

Falls das Gerät an einer sehr windigen Stelle installiert wird, ist es notwendig Windschutzbarrieren vorzusehen um eine korrekte Funktion zu gewährleisten. Wir empfehlen die Barrieren bei Wind mit über 2,5 m/s

Die Geräte, in deren Standardausführung sind nicht für salzhaltiges Umfeld geeignet

Im Winter Modus, kann das Gerät bei externer Temperatur von -20°C und kaltes Heizungswasser (20°C Wassertemperatur) gestartet werden, allerdings nur für eine kurze Zeit und nur um die Anlage in Temperatur zu bringen. Um die Zeit zu reduzieren empfehlen wir ein 3 - Wege - Ventil zu montieren, welche einen py-bass zum Verbraucher erlaubt bis die Standardbedingungen erreicht sind.

Die Geräte sind gemäβ europäischen Sicherheits-und technischen Standards entworfen und hergestellt. Die Geräte sind ausschließlich für Heizung, Kühlung und Warmwasserbereitung (D.H.W.) konzipiert. Die Geräte müssen nur für diesen speziellen Zweck verwendet werden.

Die Firma haftet nicht für Ansprüche wegen Schäden an Personen, Tieren oder materiellen Gütern oder Sachen durch unsachgemäße Montage, Einstellung und Wartung oder unsachgemäßen Gebrauch. Jegliche Nutzung, die nicht in diesem Handbuch beschrieben ist, ist untersagt.

Wird der Betrieb im Heizbetrieb mit Außentemperaturen über 20°C oder im Kühlbetrieb mit Außentemperaturen unter 20°C gewünscht, muss eine Verdampfer- / Verflüssigungsdruck-Überwachung geliefert (DCCF) eingesetzt werden. Mit dieser Funktion können Sie das Gerät im Heizbetrieb über 15°C und im Kühlbetrieb unter 20°C Umgebungstemperatur betreiben. Das Gerät überwacht den Verdampfungs- / und Verflüssigungsdruck und hält sie auf einem konstanten Niveau durch Modulieren der Luftströmung. Es kann auch verwendet werden, um Geräuschemissionen zu reduzieren, wenn Umgebungstemperaturen niedriger sind (z.B. nachts). Dieses Zubehör wird standardmäßig mit den Ausführungen SE und HE geliefert.

Im Falle von Benutzung außerhalb dieser Werte, kontaktieren Sie bitte die Firma

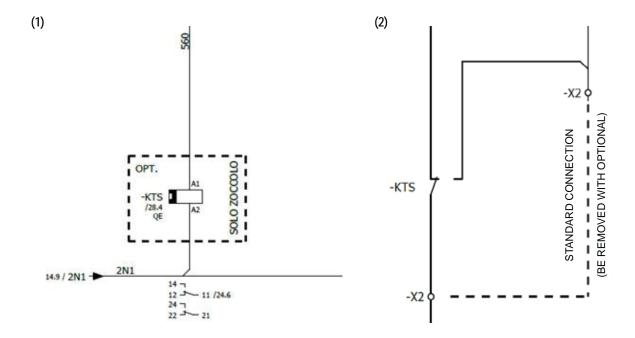
3.6 Warmwasserproduktion

Die Warmwasserproduktion mittels der Wärmepumpe ist ein sensibles Thema und muss angemessen berücksichtigt werden. Es gibt mehrere Methoden zur Herstellung von Warmwasser mit Wärmepumpen, von denen jede ihre eigenen Vor-und Nachteile hat. Es ist nicht die Absicht dieses Handbuchs, dieses Thema eingehend zu behandeln, sondern zwei der häufigsten Ansätze hervorzuheben.

Zur Steuerung des Brauchwassers ist es erforderlich, das "Brauchwasserspeichersteuerung-Kit" anzuwenden.

3.6.1 Kit zur Brauchwasserspeichersteuerung

Das Kit wird verwendet, um die Brauchwasserbereitung durch die Sonde in dem Pufferspeicher zu steuern oder um der Brauchwasserspeicher auf einem bestimmten Sollwert in Temperatur zu halten.


Das Kit besteht aus:

- Eine zusätzliche Sonde, die im Brauchwasserspeicher eingesteckt und an die vorgesehenen Klemmen im Schaltschrank des Geräts angeschlossen werden muss;
- Ein Relais, das in dem vorgesehenen Sockel des Schaltschranks eingesteckt werden muss.

Wenn das Kit vorhanden ist, ist das Gerät so eingestellt, dass die Brauchwasservorbereitung mittels der Wassertemperatur im Pufferspeicher aktiviert wird. Auf diese Weise werden die Brauchwasserpumpen nur bei der Brauchwasserbereitung anlaufen.

Um die Funktion zur Regelung der Temperatur des Warmwassers über die im Pufferspeicher positionierte Sonde zu aktivieren, ist es ausreichend, das im Kit aus der Ausstattung mitgelieferte Relais in die bereits vorhandene und verkabelte Steckerleiste im elektrischen Schaltschrank einzusetzen (1) und die Brücke zwischen den entsprechenden Klemmen (2) entfernt werden. In der Abbildung ist der Auszug des elektrischen Schaltplans angeführt.

3.7 Leistungsstufen Verdichter

	ANZAHL DER VERDICHTER								
Тур	1	2	3	4					
2504	25%	25%	25%	25%					
3004	22%	28%	22%	28%					
3204	25%	25%	25%	25%					
3504	22%	28%	22%	28%					
4004	25%	25%	25%	25%					
4504	22%	28%	22%	28%					
5004	25%	25%	25%	25%					

3.8 Korrekturtabellen

3.8.1 Der Betrieb mit Ethylenglykol

Glykolanteil	Gefrierpunkt (° C)	CCF	IPCF	WFCF	PDCF
10	-3.2	0.985	1	1.02	1.08
20	-7.8	0.98	0.99	1.05	1.12
30	-14.1	0.97	0.98	1.09	1.22
40	-22.3	0.965	0.97	1.14	1.25
50	-33.8	0.955	0.965	1.2	1.33

CCF: Kapazität Korrekturfaktor WFCF: Wasserdurchfluss Korrekturfaktor

IPCF: Eingangsleistung Korrekturfaktor PDCF: Druckverluste Korrekturfaktor

Die Wassermenge- und Druckverlustkorrekturfaktoren sind direkt auf die angegebenen Werte ohne Glykol angewendet. Der Wasserdurchflusskorrekturfaktor wird berechnet um die selbe Temperaturdifferenz zu erhalten wie die ohne der Verwendung von Glykol. Der Druckabfallkorrekturfaktor berücksichtigt die verschiedenen Fließraten aus der Anwendung des Durchsatzeskorrekturfaktors.

3.8.2 Korrekturtabellen verschiedene Δt

Die Wassertemperatur diff. (°C)	3	5	8
CCCP	0.99	1	1.02
IPCF	0.99	1	1.01

CCCP = Kühlleistung Korrekturfaktor

IPCF = Antriebsleistung Korrekturfaktor

3.8.3 Korrekturtabellen verschiedene Verunreinigungsfaktor

Verunreinigungsfaktoren	0.00005	0.0001	0.0002
CCCP	1	0.98	0.94
IPCF	1	0.98	0.95

CCCP = Kühlleistung Korrekturfaktor IPCF = Antriebsleistung Korrekturfaktor

3.9 Schalldaten

	SA/LS										
				Oktavbäi	nder (Hz)				L	w	Lp
Mod.	63	125	250	500	1K	2K	4K	8K	dB	dB(A)	dB(A)
	dB	dB	dB	dB	dB	dB	dB	dB			
2504/SA/LS	100,1	91,3	85,2	83,7	82,6	77,2	73,8	64,7	100,9	87	55
3004/SA/LS	102,1	93,3	87,2	85,7	84,6	79,2	75,8	66,7	102,9	89	57
3204/SA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
3504/SA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4004/SA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4504/SA/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60
5004/SA/LS	106,1	97,3	91,2	89,7	88,6	83,2	79,8	70,7	106,9	93	61
					SE / I	LS					
2504/SE/LS	100,1	91,3	85,2	83,7	82,6	77,2	73,8	64,7	100,9	87	55
3004/SE/LS	102,1	93,3	87,2	85,7	84,6	79,2	75,8	66,7	102,9	89	57
3204/SE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
3504/SE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4004/SE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4504/SE/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60
5004/SE/LS	106,1	97,3	91,2	89,7	88,6	83,2	79,8	70,7	106,9	93	61

					HA/	LS					
				Oktavbä	nder (Hz)				L	w	Lp
Mod.	63	125	250	500	1K	2K	4K	8K	dB	dB(A)	dB(A)
	dB	dB	dB	dB	dB	dB	dB	dB		(-)	()
2504/HA/LS	101,1	92,3	86,2	84,7	83,6	78,2	74,8	65,7	101,9	88	56
3004/HA/LS	102,1	93,3	87,2	85,7	84,6	79,2	75,8	66,7	102,9	89	57
3204/HA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
3504/HA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4004/HA/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4504/HA/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60
5004/HA/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60
					HE/	LS					
2504/HE/LS	101,1	92,3	86,2	84,7	83,6	78,2	74,8	65,7	101,9	88	56
3004/HE/LS	102,1	93,3	87,2	85,7	84,6	79,2	75,8	66,7	102,9	89	57
3204/HE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
3504/HE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4004/HE/LS	103,1	94,3	88,2	86,7	85,6	80,2	76,8	67,7	103,9	90	58
4504/HE/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60
5004/HE/LS	105,1	96,3	90,2	88,7	87,6	82,2	78,8	69,7	105,9	92	60

Lw: Schallleistungspegel nach ISO 3744.

Lp: Schalldruckpegel in 10 m Entfernung im freien Feld gemessen Richtung Q = 2 nach ISO 3744.

MTEC.4002.DE-E-122 Betriebs und Wartungshandbuch LHA Serie Deutsch

	HA / XL											
				Oktavbäi	nder (Hz)				L	W	Lp	
Mod.	63	125	250	500	1K	2K	4K	8K	dB	dB(A)	dB(A)	
	dB	dB	dB	dB	dB	dB	dB	dB				
2504/HA/XL	94,1	85,3	79,2	77,7	76,6	71,2	67,8	58,7	94,9	81	49	
3004/HA/XL	96,1	87,3	81,2	79,7	78,6	73,2	69,8	60,7	96,9	83	51	
3204/HA/XL	97,1	88,3	82,2	80,7	79,6	74,2	70,8	61,7	97,9	84	52	
3504/HA/XL	97,1	88,3	82,2	80,7	79,6	74,2	70,8	61,7	97,9	84	52	
4004/HA/XL	97,1	88,3	82,2	80,7	79,6	74,2	70,8	61,7	97,9	84	52	
4504/HA/XL	99,1	90,3	84,2	82,7	81,6	76,2	72,8	63,7	99,9	86	54	
5004/HA/XL	100,1	91,3	85,2	83,7	82,6	77,2	73,8	64,7	100,9	87	55	
					HE/ 2	XL						
2504/HE/XL	94,1	85,3	79,2	77,7	76,6	71,2	67,8	58,7	94,9	81	49	
3004/HE/XL	95,1	86,3	80,2	78,7	77,6	72,2	68,8	59,7	95,9	82	50	
3204/HE/XL	96,1	87,3	81,2	79,7	78,6	73,2	69,8	60,7	96,9	83	51	
3504/HE/XL	97,1	88,3	82,2	80,7	79,6	74,2	70,8	61,7	97,9	84	52	
4004/HE/XL	97,1	88,3	82,2	80,7	79,6	74,2	70,8	61,7	97,9	84	52	
4504/HE/XL	99,1	90,3	84,2	82,7	81,6	76,2	72,8	63,7	99,9	86	54	
5004/HE/XL	100,1	91,3	85,2	83,7	82,6	77,2	73,8	64,7	100,9	87	55	

Lw: Schallleistungspegel nach ISO 3744.

Lp: Schalldruckpegel in 10 m Entfernung im freien Feld gemessen Richtung Q = 2 nach ISO 3744.

MTEC.4002.DE-E-122 Betriebs und Wartungshandbuch LHA Serie Deutsch

4. INSTALLATION

4.1 Allgemeine Sicherheitshinweise und Verwendung von Symbolen

Vor der Arbeit an dem Gerät muss der Bediener in Betrieb und Steuerung der Maschinen geschult werden. Zudeem muss der Bediener das Handbuch vollständig gelesen und verstanden haben.

Alle Wartungsarbeiten müssen von geschultem Personal durchgeführt werden. Dies darf nur in Übereinstimmung mit allen nationalen und lokalen Vorschriften geschehen.

Die Installation und Wartung des Gerätes muss den zum Zeitpunkt der Installation gültigen örtlichen Bestimmungen entsprechen.

Vermeiden Sie den Kontakt mit beweglichen Teilen und führen Sie keine Gegenstände in diese ein.

4.2. Gesundheit und Sicherheit des Arbeiters

Der Arbeitsplatz muss sauber, ordentlich und frei von Objekten gehalten werden, die die Bewegungsfreiheit behindern könnten. Eine ausreichende Beleuchtung des Arbeitsplatzes muss gewährleistet werden, damit der Bediener die erforderlichen Operationen sicher durchführen kann. Schlechte oder zu starke Beleuchtung kann Risiken verursachen.

Der Arbeitsplatz muss immer angemessen belüftet sein. Atemschutzgeräte müssen immer funktionieren, sich stets in einem gutem Zustand befinden und den geltenden Vorschriften entsprechen.

4.3 Persönliche Schutzausrüstung

Tragen Sie sowohl bei Betrieb als auch bei der Wartung des Geräts die folgende, gesetzlich vorgeschriebene , persönliche Schutzausrüstung

Schutzschuhe.

Augenschutz.

Schutzhandschuhe.

Atemschutz.

Gehörschutz.

4.4 Inspektion

Bei Lieferung ist das Gerät auf Schäden zu überprüfen. Das Gerät wurde vor dem Versand geprüft und befand sich in einem einwandfreiem Zustand. Wenn Schäden bestehen, muss man diese auf dem Lieferschein vor der Unterzeichnung protokollieren und die firma innerhalb von 8 Tagen darüber informieren. Wenn schwere Schäden vorliegen, muss ein schriftlicher Bericht erstellt und an die firma geschickt werden.

Vor der Annahme des Gerätes ist zu überprüfen:

- Das Gerät wurde nicht während des Transports beschädigt
- Die gelieferten Waren stimmen mit den Angaben auf dem Lieferschein überein.

Im Fall eines Schadens:

- · Liste der Schäden auf dem Lieferschein
- Informieren Sie die Firma über den Umfang des Schadens innerhalb von 8 Tagen nach dem Erhalt der Ware. Nach Ablauf dieser Zeit werden keine Ansprüche berücksichtigt.
- Ein vollständiger schriftlicher Bericht wird im Fall von schweren Schäden erforderlich.

4.5 Lagerung

Sollte es notwendig sein, das Gerät zu lagern, lassen Sie es verpackt an einem offenen, gut belüfteten Ort stehen. Wenn das Gerät bereits ausgepackt ist, befolgen Sie die folgenden Anweisungen, um Schäden, Korrosion und/oder Verderb zu vermeiden:

- Stellen Sie sicher, dass alle Öffnungen gut verschlossen oder versiegelt sind;
- Verwenden Sie zur Reinigung des Geräts auf keinen Fall Dampf oder andere Reinigungsmittel, die es beschädigen könnten;
- Entfernen Sie alle Schlüssel, die für den Zugriff auf das Kontrollpanel benötigt werden, und übergeben Sie sie dem Standortmanager.

4.5.1 Transport

Der Transport ist von einem berechtigtem Spediteur mit einem geeigneten Fahrzeug vorzunehmen, um Schäden am Transportgut, sowohl während Be- und Entladung als auch während des Straßentransports zu vermeiden. Das Transportfahrzeug ha teine geeignete Transportsicherung aufzuweisen.

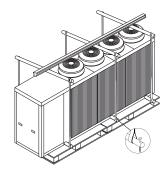
Maximale/ Minimale Transport- und Lagertemperaturen: +45°C/-20°C

4.6 Auspacken

Vor dem Auspacken und der Installation des Gerätes, ist es ratsam, dieses Handbuch zu lesen, die vorhandenen Informationen auf den Etiketten des Geräts zu beachten und alle erforderlichen Vorsichtsmaßnahmen für ein sicheres Arbeiten zu unternehmen und Schäden zu vermeiden. Die Nichtbeachtung der Warnhinweise kann gefährliche Situationen verursachen. Die Verpackung könnte gefährlich für die Betreiber sein.

Es ist ratsam, die Teile während der Handhabung verpackt zu lassen und diese erst vor der Installation zu entpacken. Die Verpackung muss sorgfältig entfernt werden, um eventuelle Schäden an der Maschine zu verhindern.

Die Verpackungsmaterialien können aus unterschiedlichem Material sein (Holz, Pappe, Nylon, etc.).


Die Verpackungsmaterialien sollten getrennt und für eine geeignete Entsorgung oder zum Recycling von einer Sonderabfallgesellschaft abgeholt werden.

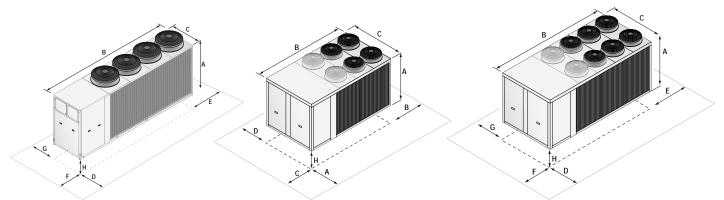
4.7 Hebe-und Fördertechnik

Beim Entladen des Gerätes empfohlen, plötzliche Bewegungen zu vermeiden um den Kühlkreislauf, Kupferrohre oder andere Bauteile nicht zu beschädigen. Die Geräte können mittels eines Gabelstaplers angehoben werden (alternativ mit Gurten). Achten Sie darauf, dass die Hebmethode die Seitenwände oder die Abdeckung nicht beschädigt. Es ist wichtig, das Gerät die ganze Zeit horizontal zu halten, um eine Beschädigung der internen Komponenten zu vermeiden.

Die Lamellen der Wärmetauscher sind scharfkantig. Verwenden Sie Schutzhandschuhe.

4.8 Standort und technische Mindestabstände

Alle Geräte sind für eine externe Installation bestimmt: Überbauten über dem Gerät und eine Lage in der Nähe von Bäumen, die teilweise das Gerät decken, müssen vermieden werden, um eine Luftumleitung zu verhindern. Es ist ratsam, eine fachgerechte Sockelmontage zu erstellen, mit einer Größe die dem Fußabdruck des Geräts entspricht. Die Einheitsvibration ist sehr niedrig: Es ist jedoch ratsam, einen Schwingungsdämpfer (Feder oder Gummi) zwischen dem Sockel und dem Gerätgrundrahmen zu installieren, um Vibrationen auf einem sehr niedrigen Niveau zu halten. Es ist wichtig das eine ausreichende Menge an Luft die Quelleventilatoren erreichen. Die Rückführung der Abluft ist zu vermeiden; Schäden haben eine schlechte Leistung oder die Aktivierung von Sicherheitskontrollen zur Folge. Aus diesen Gründen ist es notwendig, folgende Abstände einzuhalten:

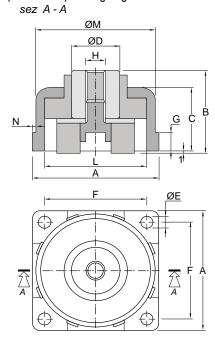

Das Gerät muss so aufgestellt werden, dass eine Wartung und Reparatur jederzeit möglich ist. Die Garantie deckt keine Kosten für die Bereitstellung von Hebezeug, Plattformen oder sonstigen Hebeanlagen, die zur Durchführung von Reparaturen während der Garantiezeit erforderlich sind.

Der Standort sollte in Übereinstimmung mit EN 378-1 und 378-3 Standards gewählt werden. Bei der Wahl des Montageortes sollten alle, durch unbeabsichtigtes Austreten von Kühlmittel verursachten Risiken berücksichtigt werden.

Alle Luft-Wasser-Wärmepumpen, erzeugen während dem Abtaumodus Kondensat an der Basis des Quelle-Wärmetauschers. Wenn die Umgebungstemperatur unter 0°C ist, kann das Wasser gefrieren, wodurch eine dicke Eisschicht im Inneren des Gerätes entsteht. Diese Schicht aus Eis kann eine Beschädigung des Wärmetauschers verursachen. Daher ist es empfehlenswert das Gerät um einen Mindestabstand (H) vom Boden zu erhöhen. Diese Empfehlung wird umso wichtiger, wenn das Gerät an einem Ort mit starkem Schneefall installiert wird.

SA/SE 2504 - 3004 - 3204

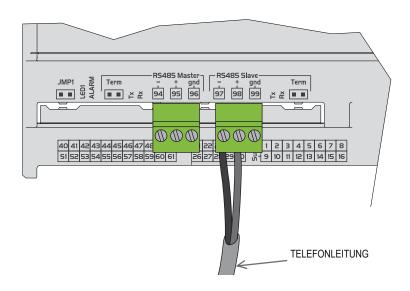
SA/SE 3504 - 4004 HA/HE-LS/XL 2504 - 3004 - 3204 - 3504


SA/SE 4504 - 5004 HA/HE-LS/XL 4004 - 4504 - 5004

		2504	3004	3204	3504	4004	4504	5004
A (mm)	SA-SE/LS	2310	2310	2310	2350	2350	2380	2380
B (mm)	SA-SE/LS	5300	5300	5300	4205	4205	4810	4810
C (mm)	SA-SE/LS	1150	1150	1150	2210	2210	2210	2210
D (mm)	SA-SE/LS	2000	2000	2000	2000	2000	2000	2000
E (mm)	SA-SE/LS	1000	1000	1000	1000	1000	1000	1000
F (mm)	SA-SE/LS	1500	1500	1500	1500	1500	1500	1500
G (mm)	SA-SE/LS	1000	1000	1000	2000	2000	2000	2000
H (mm)	SA-SE/LS	350	350	350	350	350	350	350
A (mm)	HA-HE/LS	2350	2350	2350	2350	2380	2380	2380
B (mm)	HA-HE/LS	4205	4205	4205	4205	4805	4810	4810
C (mm)	HA-HE/LS	2210	2210	2210	2210	2210	2210	2210
D (mm)	HA-HE/LS	2000	2000	2000	2000	2000	2000	2000
E (mm)	HA-HE/LS	1000	1000	1000	1000	1000	1000	1000
F (mm)	HA-HE/LS	1500	1500	1500	1500	1500	1500	1500
G (mm)	HA-HE/LS	2000	2000	2000	2000	2000	2000	2000
H (mm)	HA-HE/LS	350	350	350	350	350	350	350
A (mm)	HA-HE/XL	2350	2350	2350	2350	2380	2380	2380
B (mm)	HA-HE/XL	4205	4205	4205	4205	4805	4810	4810
C (mm)	HA-HE/XL	2210	2210	2210	2210	2210	2210	2210
D (mm)	HA-HE/XL	2000	2000	2000	2000	2000	2000	2000
E (mm)	HA-HE/XL	1000	1000	1000	1000	1000	1000	1000
F (mm)	HA-HE/XL	1500	1500	1500	1500	1500	1500	1500
G (mm)	HA-HE/XL	2000	2000	2000	2000	2000	2000	2000
H (mm)	HA-HE/XL	350	350	350	350	350	350	350

4.9 Installation von Gummi-Schwingungsdämpfern (KAVG)

Alle Geräte sollten auf einem Schwingungsdämpfer montiert werden, um die Übertragung von Vibrationen auf die Auflagefläche zu verhindern und den Geräuschpegel zu reduzieren. Die Gummi- Schwingungsdämpfer sind als Option im Katalog erhältlich. Die Schwingungsdämpfer (optional) werden von der Fabrik in separaten Verpackungen geliefert.



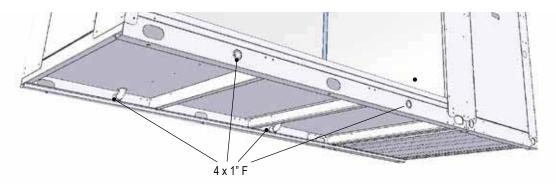
Mod.	A	В	С	D	E	F	G	Н	L	M	N
2504÷5004	145 mm	79 mm	65 mm	35 mm	12,5 mm	110 mm	12 mm	M16	118 mm	129 mm	8 mm

4.10 Serielle Schnittstellen RS485 (INSE)

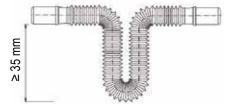
Kontrollsystem-Schnittstelle serielle Karte (nur verfügbar, MODBUS RS485)

Die Installation der Karte ermöglicht das Gerät an ein System mit MODBUS-Protokoll anzuschließen. Dieses System ermöglicht die Fernüberwachung aller Parameter des Gerätes und Änderung deren Werte. Die serielle Schnittstellenkarte wird normalerweise in der Fabrik eingebaut. Wird sie separat geliefert, ist es notwendig, die Polarität der Verdrahtung, wie in dem Diagramm gezeigt, zu beachten. Jede Umkehrung der Polarität führt dazu, dass das Gerät nicht funktioniert. Das Kontrollanschlusskabel muss ein Typ 2x0, 25 mm² sein. Das Gerät ist werkseitig mit serieller Adresse1 konfiguriert. Im Falle der Verwendung des MODBUS-Systems, können Sie die Liste der Variablen anfragen, indem Sie das Hilfeteam kontaktieren.

4.11 Installation der Kondensatwanne (BRCA)

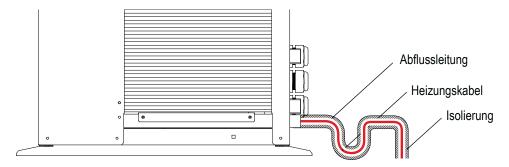


Durchmesser 3/8" Im Heizungs- und Warmwasser-Modus kann das Gerät viel Kondensat produzieren, abhängig von den Umgebungsbedingungen und der Arbeitszeit. Dieses Kondensat kann bei strengen Umgebungsbedingungen einfrieren. Das Gerät muss daher so installiert werden, dass eine Rutschgefahr für den Benutzer oder Dritte aufgrund von Eis in der Umgebung ausgeschlossen wird.


Die Montage der Kondensatwanne vor Ort kann schwierig sein. Wir empfehlen, den BRCA bei der Bestellung beizufügen, damit er im Werk installiert werden kann.

In allen Einheiten wird eine Kondensatwanne, unterhalb des Quellen Wärmetauscher (Lamellenwärmetauscher) und oberhalb des Grundrahmens kann installiert werden, welche alles Wasser sowohl im Heizungsmodus als auch im Warmwassermodus sammelt. Die Kondensatwanne ist mit einem autonomen selbsterhitzenden Frostschutz- Kit vorgesehen, welches eventuelles Eis in der Wanne schmilzt. Die Kondensatwanne ist mit einen Abschlussanschluss vorgesehen und muss an die Abflussleitung angeschlossen werden.

Der Kondensatablauf sollte einem Wasserabschneider haben, welcher sich auf derselbe Höhe wieder der Luftansaug des Lüfters, in jeden Fall nie unter 35 mm.

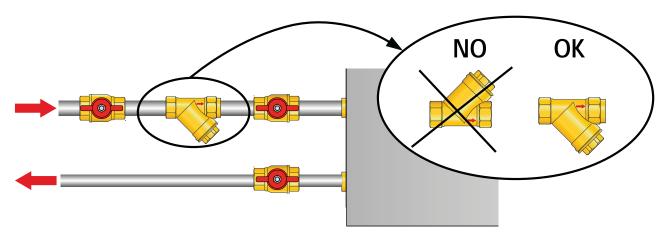

4.11.1 Installation des Stromkabels

Es wird empfohlen, ein Heizkabel in dem Ablaufrohr der Kondensatwanne zu installieren, um das Gefrieren des Wassers im Rohr selbst zu verhindern, da dies zu einer Fehlfunktion des Geräts führen kann.

Das Heizkabel, das in der Druckleitung eingefügt werden soll, muss die Schutzart IP67 mit einer spezifischen Heizleistung von mindestens 35 W pro laufendem Meter haben. Es wird auch empfohlen, dass die Druckleitung mit geschlossenen Zellen des Isolationtypen mit einer minimalen Dicke von 15 mm gedämmt wird.

4.12 Hydraulische Anschlüsse

Das Wasserrohe müssen in Übereinstimmung mit nationalen und lokalen Regulierungen installiert werden und dürfen aus Kupfer, Stahl, verzinktem Stahl oder PVC hergestellt werden. Die Rohrleitungen müssen der nominalen Wasserführung und den hydraulischen Druckverlust im System standhalten , sowie einem maximalen Druckabfall von 300 Pa / m. Alle Rohre müssen mit geschlossenzelligem Material ausreichender Dicke gedämmt werden. Die Hydraulikleitungen sollten enthalten: • Ablage für Temperaturfühler, um die Temperatur im System zu messen.


- Temperatur-und Druckmessgeräte für Instandhaltungs-und Servicebetriebe.
- Absperr-Kugelhähne, um das Gerät von der hydraulischen Schaltung zu isolieren.
- Metallische Filter, auf dem Einlassrohr mit einer Maschenweite nicht größer als 1 mm.
- Entlüftungsventile, Ausdehnungsgefäß mit Wasser Füllung, Ablassventil.

Das Rücklaufwasser muss an den Anschluss "USER WATER IN" angeschlossen werden, da ein falscher Anschluss den Wärmetauscher durch Frost beschädigen kann.

Es ist Pflicht, an einer USER WATER IN Verbindung einen Wasserfilter mit einer Maschenweite nicht größer als 1 mm zu installieren. Der Einbau dieses Filters ist obligatorisch und die Garantie erlischt, wenn er entfernt wird. Der Filter muss sauber gehalten und regelmäßig überprüft werden.

Alle Geräte werden werkseitig mit einem Strömungswächter geliefert; Der Strömungswächter muss in den Rohrleitungen Verbindung mit der Bezeichnung "USER WASSER AUS" ausgestattet werden. Wenn der Durchfluss-Schalter verändert, entfernt oder auf den Wasserfilter am Gerät verzichtet wird, wird die Garantie ungültig erklärt.

Der Wasserfluss durch den Wärmetauscher des Gerätes sollte nicht unter Δt 8°C fallen und wird unter den folgenden Bedingungen gemessen:

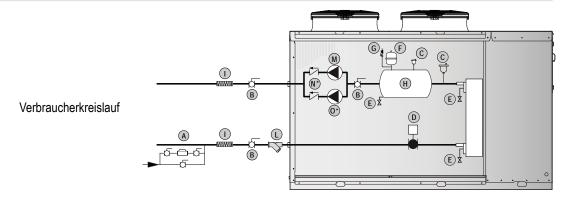
Heizbetrieb: 7°C Trockentemperatur Umgebung, 35°C Wasseraustrittstemperatur; Kühlbetrieb: 35°C Trockentemperatur Umgebung, 7°C Wasseraustrittstemperatur.

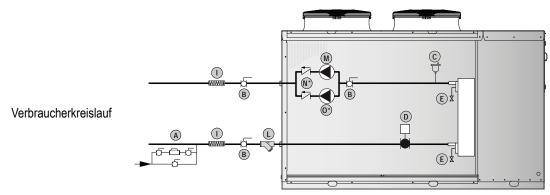
4.13 Chemische Eigenschaften des Wassers


Das System muss mit sauberem Wasser gefüllt werden und muss nach einem vollständig durchgeführen Spülvorgang gelüftet werden. Das Wasser sollte folgende Merkmale aufweisen:

PH	6-8	Gesamthärte	unter 50 ppm
Elektrische Leitfähigkeit	weniger als 200 mV/cm (25°C)	Schwefel-lonen	keine
Chlor-lonen	unter 50 ppm	Ammoniak-lonen	keine
Schwefelsäure-lonen	unter 50 ppm	Silicon-lonen	kleiner als 30 ppm
Insgesamt Eisen	unter 0.3 ppm		

4.14 Hydraulikkomponenten


4.14.1 Standard Version



Die Wasserpumpe der Zuleitung in Richtung des Wasserzulaufanschlusses des Gerätes installiert werden.

4.14.2 A1ZZU - A2ZZU

4.14.3 A1NTU - A2NTU

А	Systemfüllungsgruppe	Н	Wassertank
В	Kugel Absperrventil	I	Flexible Anbindung
С	Entlüftungsventil	L	Wasserfilter
D	Durchflussschalter	M	Wasserpumpe
E	Ablassventil	N*	Rückschlagventil
F	Ausdehnungsgefäß	0*	Wasserpumpe
G	Sicherheitsventil		

Legend

*Enthalten in den Ausführungen A2NTU – A2NTR – A2ZZU, nicht verfügbar für Ausführungen A1NTU – A1NTR – A1ZZU

Komponenten die innerhalb der Maschine gezeigt werden sind werksmontiert. Komponenten außerhalb der Maschine sind vom Anlagenerrichter herzustellen, um eine korrekte Funktion zu gewährleisten. Diese sind bauseitig zu errichten.

4.15 Minimale Wassermenge

Luft-Wasser-Wärmepumpen benötigen eine mindest Wassermenge in dem Benutzer-Hydraulikkreis um einen korrekten Betrieb zu gewährleisten. Die korrekte Menge verhindert ein übermäßiges Ein- und Ausschalten der Verdichter, erhöht die Lebensdauer der Wärmepumpe und hat damit einen geringeren Verlust der Wassertemperatur während dem Abtauvorgang. Aus diesen Gründen ist es notwendig der Wärmepumpe, die folgenden Angaben in Bezug auf die erforderlichen Wassermengen zur Verfügung zu stellen:

Empfohlene Wassermenge: 15 Liter/kW

Empfohlene Mindestwassermenge/ Inhalt: 20lt. thermische Leistung (kW)/ Anzahl der Verdichter (Leistungsstufen)

Model	2504	3004	3204	3504	4004	4504	5004
Minimale Wassermenge Heizbetrieb (I)	1230	1400	1530	1700	1970	2240	2420

4.16 Warmwasser (TW) Hydraulikkreis

Die minimale Warmwassermenge beträgt:

Modell	2504	3004	3204	3504	4004	4504	5004
Minimale Umlaufwassermenge (I)	1230	1400	1530	1700	1970	2240	2420

Der in obiger Tabelle aufgelistete Mindestwasserinhlat des Warmwasserkreises entspricht dem Mindestinhalt der grundlegend für eine korrekte Arbeit des Geräts in Bezug auf eine tragbare Anzahl an Verdichterstarts und der minimal zulässigen Arbeitszeit pro Zyklus ist. Die oben gelisteten Werte garantieren nicht für die Verfügbarkeit und Temperatur des Warmwassers; das korrekte Volumen MUSS basierend auf dem Systemtyp der Warmwasserproduktion und der Benutzeranforderungen berechnet werden. Bitte wenden Sie sich an das Technische Support Team von die Firma um diesbezüglich weitere Informationen zu erhalten.

4.17 Befüllung des Hydrauliksystems

- Vor dem Befüllen überprüfen Sie, dass das Systemablassventil geschlossen ist.
- Öffnen Sie alle Rohrleitungen, Wärmepumpen und Entlüfterstutzen des Endgeräts.
- Öffnen Sie die Absperrventile.
- Beginnen Sie mit dem Befüllen, indem Sie langsam das Wasserventil in der Füllgruppe außerhalb des Geräts öffnen.
- Sobald Wasser aus den Endgerätlüftungsdüsen tropft, schließen Sie diese und füllen Sie weiter, bis das Manometer einen Druck von 1,5 bar anzeigt.

Die Installation sollte auf einen Druck von zwischen 1 und 2 bar befüllt werden. Es wird empfohlen, dass dieser Vorgang wiederholt wird, nachdem das Gerät einige Stunden (aufgrund des Vorhandenseins von Luftblasen im System) gearbeitet hat. Der Druck der Anlage sollte regelmäßig überprüft werden und, wenn dieser unter 1 bar sinkt, sollte man den Wassergehalt aufstocken. Wenn häufige Aufstockungen benötigt werden, überprüfen Sie alle Anschlüsse auf Dichtigkeit.

4.18 Entleerung des Hydrauliksystems

- Vor der Entleerung, muss der Netzschalter auf Position " Aus " stehen.
- Vergewissern Sie sich, dass das Füllgruppenventil geschlossen ist.
- Öffnen Sie das Ablassventil außerhalb des Geräts und alle Installations- und Anschlussentlüftungsventile.

Sollte die Flüssigkeit im Kreislauf Frostschutzmittel enthalten, darf dieses nicht in die Abwasserleitung abfließen, sondern muss für ein mögliches Recycling oder zur korrekten Entsorgung gesammelt werden.

4.19 Elektrische Anschlüsse: Sicherheitshinweise

Die Schalttafel befindet sich im Inneren des Gerätes an der Seite des Technikfachs, wo sich auch verschiedene Komponenten des Kältekreises befinden. Um auf das elektrische Board zugreifen zu können, entfernen Sie die Frontblende des Gerätes:

Die Stromanschlüsse müssen gemäß dem im Gerät beigefügten Schaltbild und in Übereinstimmung mit den geltenden Normen hergestellt werden.

Achten Sie darauf, dass der Stromversorgung des Geräts ein Schalter vorgeschaltet ist. Stellen Sie sicher, dass der Hauptschaltergriff mit einem Vorhängeschloss gesichert ist, und auf dem Griff ein sichtbares Warnzeichen angebracht ist.

Es muss überprüft werden, dass die elektrische Versorgung entsprechend der auf dem Etikett an der Vorderseite des Geräts gelisteten elektrischen Solldaten (Spannung, Phasen, Frequenz) entsprechen.

Das Netzkabel und Leitungsschutz müssen gemäß den Spezifikationen des Schaltplanformulars, der sich im Gerät befindet, bemessen werden.

Der Kabelquerschnitt muss im richtigen Verhältnis zur Justierung des Systemseitenschutzes stehen und Faktoren, die einen Einfluss haben könnten, müssen berücksichtigt werden (Temperatur, Art der Isolierung, Länge, etc.).

Bezüglich der Stromversorgung müssen die gemeldeten Toleranzen und Grenzwerte beachtet werden: Sollten diese Toleranzen nicht eingehalten werden, erlischt die Gewährleistung.

Die Durchflussschalter, wenn nicht im Werk montiert, müssen in Übereinstimmung mit dem Schaltplan angeschlossen werden. Die Durchflussschalterverbindungen in der Klemmleiste dürfen niemals überbrückt werden. Die Gerätgarantie erlischt, wenn die Anschlüsse verändert oder nicht korrekt montiert werden.

Erden Sie alle nach Gesetz und Recht vorgegebenen Verbindungen.

Achten Sie darauf, dass vor jedem Servicebetrieb des Geräts die Stromversorgung abgeschaltet ist.

Die Dimensionierung der Elektrozuleitung und Absicherung der Einheit hat nach den Angaben im Maschinenschaltplan und nach dem Maximalwerten zu erfolgen um eine korrekte Spannung zu gewährleisten.

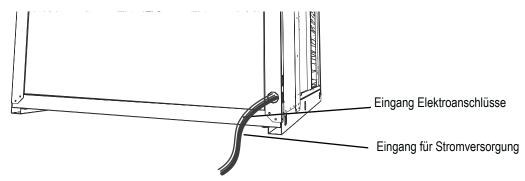
FROSTSCHUTZ

Beim Öffnen des Hauptschalters wird der Strom von jeder elektrischen Heizung und Frostschutzeinrichtung getrennt, einschließlich der Kompressorkurbelwannenheizungen. Der Hauptschalter darf nur für Reinigung, Wartung oder Reparatur getrennt werden.

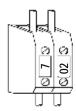
4.20 Elektrische Daten

Die unten gelisteten elektrischen Daten beziehen sich auf Standardgeräte ohne Zubehör. In allen anderen Fällen beziehen Sie sich auf die Daten, die in den beigefügten elektrischen Schaltplänen gelistet sind

Die Netzspannungsschwankungen können nicht mehr als ± 10% des Nennwertes sein, während die Spannungsabweichung zwischen einer Phase und einer anderen nicht 1% überschreiten darf, gemäß EN60204. Wenn diese Toleranzen nicht eingehalten werden sollten, kontaktieren Sie bitte unser Unternehmen.


Modell		2504	3004	3204	3504	4004	4504	5004
Stromversorgung	V/~/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Steuerstromkreis	V/~/Hz	24 V						
Hilfsstromkreis	V/~/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Stromversorgung Ventilator	V/~/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Kabelquerschnitt	$\mathrm{mm^2}$	185	185	185	240	240	2x150	2x240
Erdungsanschluss	mm²	90	90	90	120	120	150	240

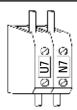
Die elektrischen Daten können sich ohne vorherige Ankündigung ändern. Es ist daher notwendig, sich immer auf die beigefügten Schaltpläne zu beziehen.


4.21 Elektrische Anschlüsse

4.21.1 Stromversorgung und Elektroanschlüsse

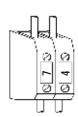
4.21.2 Anschluss der Klemmen (Allgemein)

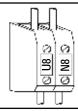
Alle Klemmen, die sich auf die nachfolgenden Erläuterungen beziehen, sind an der Klemmleiste im elektrischen Kasten zu finden. Alle unten genannten elektrischen Verbindungen müssen durch den Installateur vorgenommen werden.



HEIZWASSERKREISLAUF EINLASSSENSOR (BTI)

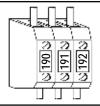
Die Rücklauftemperatur wird von dem Heiz gemessen.


Der Standard-Betriebsmodus hat die Pumpe im Standby-Zeitraum ausgeschaltet (Kompressoren Off). Der Sensor muss in einer geeigneten Position platziert werden, um die Temperatur des Sekundärkreis zu messen. Eine falsche Positionierung des Benutzerswassersensors kann nachteilig den Betrieb der Wärmepumpe beeinflussen. Der Fernfühler wird lose mit dem Gerät (es ist im Inneren des Schaltkasten) und mit einem 3 m langem Kabel geliefert. Wenn dies zu kurz ist, ist es möglich, die Kabellänge zu erhöhen, indem man ein Kabel mit einem Durchmesser von 0,5 mm² bis zu einer maximalen Entfernung von 50 Metern verwendet.


BENUTZER WASSEREINTRITTSPUMPE

Wenn die Pumpe werkseitig geliefert und montiert ist (A Version), wird sie schon angeschlossen sein. In der Standardkonfiguration schaltet die Mikroprozessorsteuerung die Wasserpumpe ab, wenn der Sollwert erreicht wird oder das Gerät sich im Standby-Modus befindet. Diese Strategie eignet sich, wenn das Gerät einen Pufferspeicher heizt, aus dem ein Sekundärkreis aufgenommen wird und eine erhebliche Reduzierung des Energieverbrauchs bietet.

WARMWASSER FÜHLER (BTS)


Dies dient dazu, die Rücklauftemperatur aus dem Warmwasserkreis zu messen. Der Sensor muss in der Tasche in DHW (Warmwasser) Zylinder platziert werden, in einer geeigneten Position, um die richtige Temperatur der Warmwasserbereitung zu messen. Eine falsche Positionierung des Benutzerswassersensors kann nachteilig den Betrieb der Wärmepumpe beeinflussen. Der Fernfühler wird lose mit dem Gerät (im Inneren des Schaltkastens) und mit einem 3 m langem Kabel geliefert. Wenn dies zu kurz ist, ist es möglich, die Kabellänge zu erhöhen, indem man ein Kabel mit einem Durchmesser von 0,5 mm² bis zu einer maximalen Entfernung von 50 Metern verwendet.

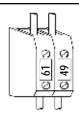
BRAUCHWARMWASSER-PUMPE

In der Standardkonfiguration schaltet die Mikroprozessorsteuerung des Geräts die Wasserpumpe, wenn der Sollwert erreicht wurde oder das Gerät sich im Standby-Modus befindet ab. Diese Strategie bietet eine erhebliche Reduzierung des Energieverbrauchs.

4.21.3 Anschluss der Klemmen (je nach Ausführung)

3 WEGE ON / OFF Ventil

Das 3-Wege-Ventil wird mit 2-Rohrsystemen zur Warmwassererzeugung verwendet; das Ventil wird durch den Warmwassersensor (BTS) aktiviert und leitet das heiße Wasser entweder in den Warmwasserspeicher oder an den Heizungsspeicher . Das Ventil wird über die Klemmen 191/193/192 verbunden.

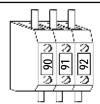


FERNBEDIENUNG ON/OFF

Um das Gerät aus der Ferne ein- oder auszuschalten, muss die zwischen den Klemmen 1 und 2 angeschlosse Kabelbrücke mit einem Schalter ersetzt werden.

Kontakt geschlossen, Gerät EIN,

Kontakt offen, Gerät aus.



Fernbedienung SOMMER/WINTER VERÄNDERUNG

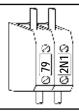
Um aus der Ferne das Gerät von Heizen auf Kühlen umzuschalten, muss die zwischen den Klemmen 50 und 49 angeschlosse Kabelbrücke mit einem Schalter ersetzt werden.

Kontakt geschlossen, Einheit im Winter-Modus,

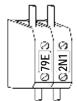
Kontakt offen, Sommerbetrieb.

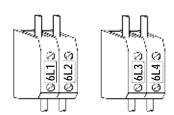
FERNBEDIENUNG ALLGEMEINER ALARM

Um den allgemeinen Alarm aus der Ferne anzuzeigen, verbinden Sie das optische oder akustische Gerät zwischen den Anschlüssen 90/91/92.


Kontakte 90/91 NC (normalerweise geschlossen)

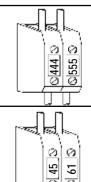
Kontakte 91/92 NO (normalerweise geöffnet)


Die Nummerierung der Anschlüsse können ohne jede Vorankündigung vom Werk geändert werden. Für den korrekten Anschluss, ist es zwingend notwendig, dem Schaltplan zu folgen der zusammen mit dem Gerät ausgeliefert wird.


BENUTZER KREISLAUF ELEKTRISCHE INTEGRATIONSHEIZUNGEN

Wenn die Benutzerschaltungsintegrationsheizungen erforderlich sind, ist die Spule des Schützes, die zum Umschalten zwischen diesen dient, über die Anschlüsse 78/2N1 zu verbinden.

WARMWASSER-ELEKTRISCHE INTEGRATIONSHEIZUNGEN


Wenn Warmwasserkreisintegrationsheizungen erforderlich sind, ist die Spule des Schützes, die zum Umschalten zwischen diesen dient, über die Anschlüsse 93/2N1 zu verbinden.

BEGLEITHEIZUNG KONDENSATABLAUF

Wenn Sie einen Schlauch an den Kondensat Ablauf anbringen möchten, sollte dieser vor Einfrieren beheizt werden (siehe Abb. Seite 29). Die maximale Leistung darf nicht 0,5 A und nicht 100 Watt überschreiten. Sie können die Begleitheizung an die Klemmen 6L3/6L4 (Modd 252÷402) und 150/154 (Modd 452÷5004) anschließen. Die Begleitheizung wird dann vom Mikroprozessor gleichzeitig mit der eingebauten Heizung der Kondensatwanne geregelt.

4.21.4 Ab Werk angeschlossen (Muss bei Inbetriebnahme kontrolliert werden)

AUSSENFÜHLER ZUR RÜCKLAUFANHEBUNG IM HEIZBETRIEB (BTE)

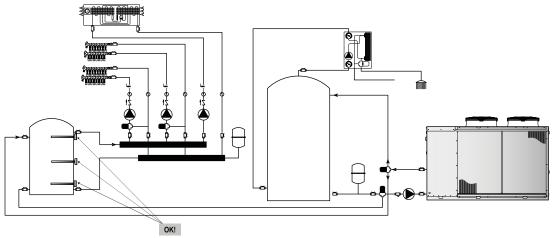
Optimiert die Effizienz durch die Veränderung vom Sollwert in Abhängigkeit von der Außentemperatur. Die elektronische Steuerung, vergleicht die Werte vom eingestellten Sollwert und der Außenlufttemperatur und ändert den Sollwert in dynamischer Weise. Dadurch werden die Temperaturen anhand den realen klimatischen Bedingungen angepasst. Diese Dynamik ermöglicht erhebliche Energieeinsparungen und optimiert den Betrieb der Anlage. Die Funktion ist im Heizbetrieb als Standard aktiviert und ist auch verfügbar (auf Anfrage) im Kühlbetrieb. Der Fühler ist an den Klemmen 11/7 angeschlossen.

STRÖMUNGSWÄCHTER NUTZER WÄRMETAUSCHER (SFW1)

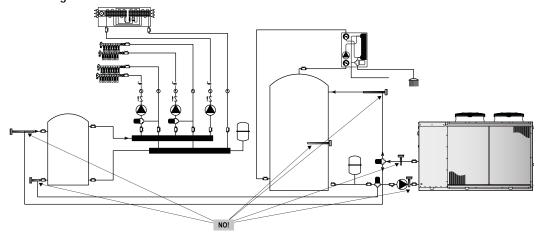
Wird verwendet um die Einheit bei zu geringer Wassermenge zu schützen und ist ab Werk an den Klemmen 50/45 angeschlossen.

HINWEIS: Hier darf nicht gebrückt werden, ansonsten erlischt die Gewährleistung.

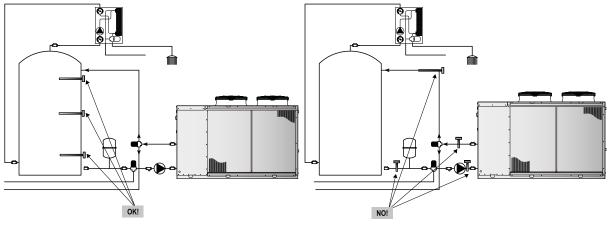
Die Nummerierung der Anschlüsse können ohne jede Vorankündigung vom Werk geändert werden. Für den korrekten Anschluss, ist es zwingend notwendig, dem Schaltplan zu folgen der zusammen mit dem Gerät ausgeliefert wird.


4.22 Positionierung Rücklaufsensor Heizen / Kühlen (BTI)

Die richtige Positionierung des BTI-Sensors ist extrem wichtig, um den korrekten Betrieb der Wärmepumpe zu gewährleisten. Der BTI-Sensor wird verwendet, um die Wassertemperatur auf dem Sollwert zu halten. Der BTI-Sensor wird auch verwendet, um die Wassertemperatursollwert erreicht ist.



Um die korrekte Messung der Temperatur zu garantieren, führen Sie die Sonde in die Tauchhülse des Pufferspeichers ein.


Die richtige Positionierung des BTI-Sensors

Falsche Positionierung des BTI-Sensors

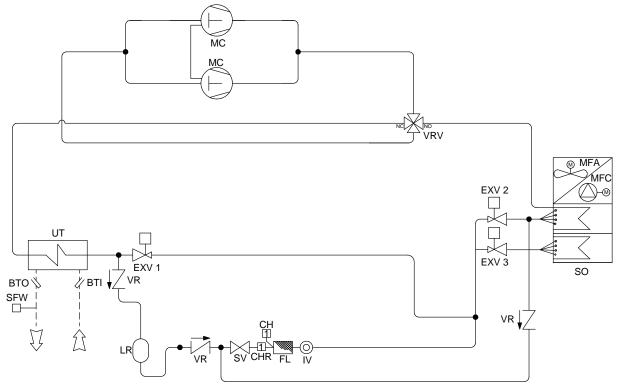
4.23 Positionierung Rücklaufsensor Trinkwasser (BTS)

Richtige Positionierung des BTS-Sensors

Falsche Positionierung des BTS-Sensors

4.24 Kältekreisläufe

4.24.1 Kältekreislauf versionen SA/SE P2U - P2S - einfaches Register


P2U Version

Das 2-Leiter-System kann warmes Wasser zum Heizen oder kaltes Wasser zum Kühlen produzieren. Der Kältekreislauf wird dabei um geschalten, das Aufheizen von Trinkwasser ist nicht möglich.

P2S Version

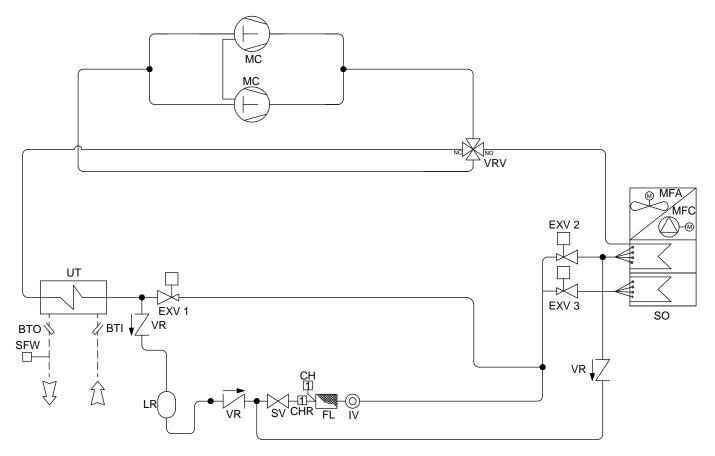
Diese Version kann zusätzlich zur Produktion von warmem Wasser zum Heizen oder kaltes Wasser zum Kühlen auch das Trinkwasser (TW) aufheizen. Drei Temperaturen (Heizen und TW) / (Kühlen und TW) sind möglich. Der Regler schaltet die externen 3-Wege-Ventile um. Priorität hat immer das Trinkwasser auch wenn sich die Anlage im Kühlbetrieb befindet, der Kältekreislauf wird beim Kühlbetrieb automatisch umgeschalten.

Das grundlegende kühldiagramm ist rein indikativ.

Modelle LHA 2504 - 3004 - 3204 - 3504, 4004 - 4504 - 5004, verwenden 2 unabhängige Kältekreisläufe gem. obiger Abbildung.

BTI	Wassereintrittssensor	MFC	Centrifugal fan
BTO	Wasseraustrittssensor	SFW	Durchflussmesser
CH	Füllanschluss	SO	Quelle
CHR	Füllanschluss	SV	Wasserhahn
ECO	Expansionsventil 1,2,3,4	UT	Nutzerwärmetauscher
EXV	Kühlmittelfilter	VR	Rückschlagventil
FL	Flüssigkeitsindikator	VRV	Umschaltventil
IV	Flüssigkeitssammler	YEC	Economiser Magnetventil
LR	Verdichter	_	Kältetechnische Anschlüsse
MC	Axial Ventilator		Hydraulische Anschlüsse
MFA	Ventilator Quellwärmetauscher		

4.24.2 Kältekreislauf versionen HA/HE P2U - P2S - doppeltes Register


P2U Version

Das 2-Leiter-System kann warmes Wasser zum Heizen oder kaltes Wasser zum Kühlen produzieren. Der Kältekreislauf wird dabei um geschalten, das Aufheizen von Trinkwasser ist nicht möglich.

P2S Version

Diese Version kann zusätzlich zur Produktion von warmem Wasser zum Heizen oder kaltes Wasser zum Kühlen auch das Trinkwasser (TW) aufheizen. Drei Temperaturen (Heizen und TW) / (Kühlen und TW) sind möglich. Der Regler schaltet die externen 3-Wege-Ventile um. Priorität hat immer das Trinkwasser auch wenn sich die Anlage im Kühlbetrieb befindet, der Kältekreislauf wird beim Kühlbetrieb automatisch umgeschalten.

Das grundlegende kühldiagramm ist rein indikativ.

BTI	Wassereintrittssensor	MFC	Radialventilator
BTO	Wasseraustrittssensor	SFW	Durchflussmesser
СН	Füllanschluss	SO	Quelle
CHR	Füllanschluss	SV	Wasserhahn
ECO	Expansionsventil 1,2,3,4	UT	Nutzerwärmetauscher
EXV	Kühlmittelfilter	VR	Rückschlagventil
FL	Flüssigkeitsindikator	VRV	Umschaltventil
IV	Flüssigkeitssammler	YEC	Economiser Magnetventil
LR	Verdichter	_	Kältetechnische Anschlüsse
MC	Axial Ventilator		Hydraulische Anschlüsse
MFA	Ventilator Quellwärmetauscher		

5. INBETRIEBNAHME

5.1 Vorprüfungen

Vor Inbetriebnahme des Gerätes müssen die in diesem Handbuch beschriebenen Kontrollen der elektrischen Versorgung und Verbindungen, des Hydrauliksystems und des Kältekreislaufs, durchgeführt werden.

Die Inbetriebnahme muss in Übereinstimmung mit den in den vorherigen Abschnitten detaillierten Anweisungen ausgeführt werden.

Wenn es erforderlich ist, das Gerät ein-und ausschalten, tun Sie dies nie mit dem Hauptschalter: Dieser sollte nur verwendet werden, um das Gerät vom Stromnetz zu trennen wenn das Gerät dauerhaft ausgeschaltet ist. Die Isolation resultiert in keiner Versorgung für die Kurbelwannenheizung und der Kompressor könnte beim Start ernsthaft beschädigt werden.

In die extraleisen Ausführungen, stellen Sie sicher, dass die gelben Befestigungen auf dem Grundrahmen entfernt wurden, vor der Inbetriebnahme durchzuführen.

5.1.1 Vor dem Start-up

Während des Transports oder der Installation könnten Schäden entstehen. Es wird empfohlen, dass vor der Installation des Geräts eine detaillierte Prüfung durchgeführt wird um mögliche Kältemittelleckagen, die durch Bruch der Kapillaren, Druckschalterverbindungen, Manipulation der Kältemittelleitung, Erschütterungen beim Transport oder allgemeinen Missbrauch verursacht wurden.

- Stellen Sie sicher, dass das Gerät fachgerecht und in Übereinstimmung mit den Richtlinien in diesem Handbuch installiert wird.
- Überprüfen Sie, dass alle Netzkabel richtig angeschlossen sind und alle Anschlüsse ordnungsgemäß befestigt wurden.
- Die Betriebsspannung zwischen den Phasen RST ist die, die auf den Etiketten angezeigt ist.
- Überprüfen Sie, dass das Gerät an das Erdungssystem verbunden ist.
- Überprüfen Sie, dass kein Kältemittel austritt.
- Prüfen Sie Ölflecken, dies könnte ein Zeichen für ein mögliches Leck sein.
- Überprüfen Sie, dass der Kältekreislauf den korrekten Druck auf dem Manometer anzeigt (falls vorhanden) anderweitig nutzen Sie ein externes.
- Überprüfen Sie, dass die Shrader-Kappen vom richtigen Typ und dicht sind.
- Prüfen Sie, ob Kurbelwannenheizungen korrekt (falls vorhanden) mit Strom versorgt sind.
- Überprüfen Sie, dass alle Wasseranschlüsse richtig installiert und alle Angaben der Etiketten beachtet werden.
- Das System muss gespült, gefüllt und entlüftet werden, um jegliche Luft zu entfernen.
- Achten Sie darauf, dass sich die Wassertemperaturen innerhalb der im Handbuch gemeldeten Einsatzgrenzen bewegen.
- Vor der Inbetriebnahme muss überprüft werden, ob alle Platten in der richtigen Position ersetzt und mit Befestigungsschrauben verriegelt werden.

Ändern Sie nicht die innere Verdrahtung des Gerätes, da dies sofort zum Erlöschen der Garantie führt.

Die Kurbelwannenheizungen müssen vor der Inbetriebnhame mindestens 12 Stunden mit Strom versorgt werden (Vorheizzeit). Um dies zu tun, isolieren Sie den Verdichter (s), Lüfter und Pumpe (s) im Elektrikkasten und schalten Sie dann den Hauptisolator (Heizungen werden automatisch versorgt wenn der Hauptschalter geschlossen ist). Die Kurbelwannenheizungen arbeiten richtig, wenn nach einigen Minuten die Verdichterkurbelgehäusetemperatur etwa 10 ÷ 15 ° C höher als die Umgebungstemperatur ist.

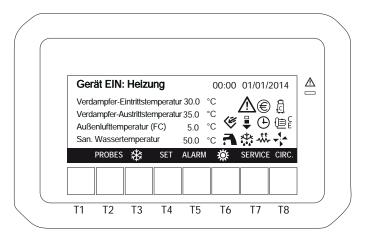
Während der 12 Stunden der Vorheizperiode ist es auch wichtig zu überprüfen, dass der Knopf OFF auf dem Display oder dass sich sich das Gerät im Stand-by-Modus befindet, angezeigt werden. Wenn es einen versehentlichen Start-up gab, bevor die 12 Stunden Voreizperiode abgelaufen ist, könnten die Kompressoren ernsthaft beschädigt werden und die Garantie erlischt sofort.

5.1.2 Sollwert Differential Grundsstellung

Device		Set-point	Differential	Zurücksetzen
Temperaturregler (Heizbetrieb)	°C	35	2	
Temperaturregler (Warmwasser)	°C	50	2	
Regelthermostat (Kühlbetrieb)	°C	23	2	
Frostschutz-Thermostat	°C	4,5	4	Manuell
Hochdruckschalter	Bar	45	7	Automatisch für 3-mal
Niederdruckschalter	Bar	5,7	1,3	(dann manuell)
Wasser-Sicherheitsventil (in einer Version)	Bar	6,0		Automatisch

Wird das Gerät nur zum Heizen / Kühlen (ohne Warmwasserbereitung) benötigt ist, muss der interne Parameter des Mikroprozessors FS1 von 2 bis 1 geändert werden, um die Konfigurationsalarme zu vermeiden. Bitte kontaktieren Sie das Unternehmen für weitere Informationen.

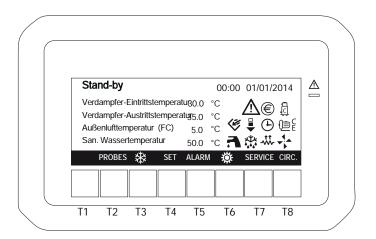
5.1.3 Kontrollen bei laufendem Betrieb


- Überprüfen Sie die Rotation der Lüfter (and comrpessors). Wenn die Drehung nicht korrekt ist, trennen Sie den Hauptschalter und tauschen Sie zwei Phasen der ankommenden Hauptleitung um die zu Motordrehrichtung zu wechlsen (nur bei Geräten mit Drehstrom-Lüftermotoren).
- Überprüfen Sie nach einigen Betriebsstunden, ob das Schauglas eine grüne Farbe hat: wenn der Kern gelb ist, ist Feuchtigkeit in der Schaltung vorhanden. In diesem Fall ist es notwendig die Schaltung zu entwässern. Dies darf nur durch qualifiziertes Fachpersonal durchgeführt werden. Überprüfen Sie, dass es keine kontinuierliche Dampfblasen am Schauglas entstehen. Dies würde einen Mangel an Kältemittel angeben. Ein paar Dampfblasen sind akzeptabel.
- Einige Minuten nach dem Anlagenstart ist bei maximaler Ventilatordrehzahl sicherzustellen, dass die equivalente Differenztemperatur gem. Kältemitteldruck zur Außentemperatur zwischen 7- 10°K abweicht. Dies ist ebenso am Wasserwärmetauscher durchzuführen, wobeidie Abweichung hier 3-5°K entsprechen soll- (Kontrolle Unterkühlung/Überhitzung).

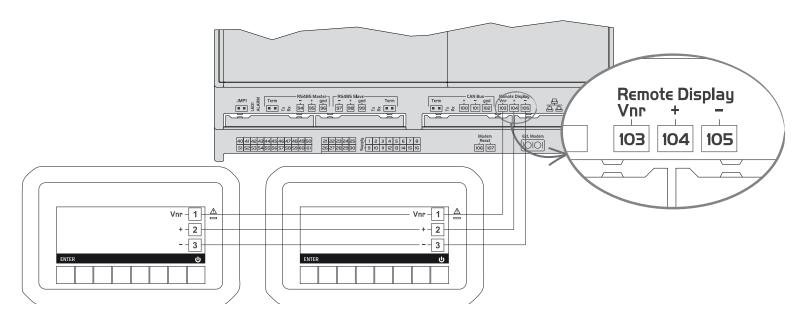
5.2 Beschreibung des Bedienfeldes

5.3 Um die Anlage mit der Fernbedienung zu regeln

5.3.1 Display-Symbole

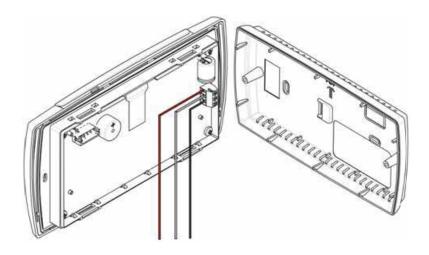

Icon	Meaning	lcon	Meaning
	Verdichter in Betrieb.	- *** -	Frostschutzheizungen in Betrieb.
s⊕E	Wasserpumpe	(Automatische Abschaltung und/oder Energiesparmodus in Betrieb.
*	Ventilatoren in Betrieb.	(E)	Freie Kühlung in Betrieb.
<u> </u>	Blinkt, wenn ein Alarm aktiv ist.	a	Trinkwasserproduktion
•	Energiesparfunktion	***	Zeigt den Abtauvorgang an
=	"Unloading" in Betrieb. (nicht verfügbar).		

5.3.2 Schlüsselfunktion


T2: PROBES	Display Sensoren Status.
T3: 🔅	Gerät ein-und ausschalten.
T4: SET	Macht es möglich die Sollwerte anzuzeigen oder zu ändern.
T5: ALARM	Anzeige-und Reset-Alarme.
T6:	Gerät ein-und ausschalten.
T7: SERVICE	Es wird verwendet, um im Funktionsmenü aufzurufen.
T8: CIRC	Es wird verwendet, um in den Verdichter Status Menü aufzurufen.

Wenn das Gerat ausgeschaltet ist, zeigt das Display

5.4 Fernbedienung



Die Fernbedienung kann bis zu einer maximalen Entfernung von 50 m von der Einheit angeschlossen werden. Falls die Stromversorgung Polarität nicht respektiert wird, die Fernbedienung und die programmierbare Steuerung iPro.CHILL kann schwer beschädigt werden.

- Bei Stromunterbrechung (schwarzes oder rotes Kabel) funktioniert die Fernbedienung nicht
- Bei Problemen mit der Verbindung, zeigt das Display "noL" (keine Verbindung) an

5.4.1 Anschlussschema vom Display bei Wandmontage

6. ANWENDUNG

6.1 Ein- und Ausschalten der Anlage

Um die Anlage entweder Ein-oder Auszuschalten, stehen Ihnen zwei Möglichkeiten zur Verfügung:

- Über die Tastatur am Display
- Über eine Fernabschaltung z. B. EVU-Kontakt POTENZIALFREI

Vor der ersten Inbetriebnahme sind die im Abschnitt "Regelmäßige Überprüfungen" beschriebenen Arbeiten durchzuführen.

6.1.1 Die Anlage mit der Tastatur am Display Ein-oder Ausschalten

Kühlbetrieb

Wollen Sie mit der Anlage kühlen drücken Sie die Taste

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben das Symbol

in für ein paar Sekunden bis auf dem Display oben dem Display o

Heizbetrieb

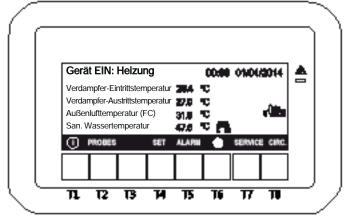
Wollen Sie mit der Anlage heizen drücken Sie die Taste . für ein paar Sekunden bis auf dem Display oben das Symbol 🔅 und der Text erscheint "Gerät EIN: Heizen" beim Ausschalten, bzw. bei Umschaltung auf Kühlen (P2U-P2S) widerholen Sie den Vorgang nochmals. Die Verzögerungszeit vom Verdichter wird nun aktiviert und das Symbol blinkt. Die Wasserpumpe wird aktiviert und das Pumpensymbol erscheint. Nach Verdichterstart zeigt das Display die Ein- und Austrittstemperaturen sowie die San-Wassertemperatur an.

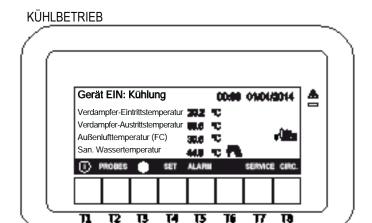
Trinkwasserbetrieb

Beim ersten Start überprüft der Mikroprozessor die Trinkwasser-Eintrittstemperatur gemessen durch den Sensor-BTS (dies hat Vorrang vor den anderen Parametern). Sobald die gemessene Temperatur niedriger ist der Trinkwasser-Sollwert, wird der Trinkwasserbetrieb automatisch aktiviert. Wenn die Anlage heizen soll und die Trinkwassertemperatur höher als der Sollwert ist (keine Anforderung für die Trinkwasserbereitung), aktiviert der Mikroprozessor den Heizbetrieb. Beim 4-Leiter-System (P4U-P4S) wenn die Anlage benötigt wird, um im Kühl-und Heizbetrieb zu arbeiten, aktiviert der Mikroprozessor beide Funktionen gleichzeitig. Wenn die Heiz-oder Trinkwasser Temperatur erreicht ist und aber noch Kühlbetrieb erforderlich ist, aktiviert der Mikroprozessor nur den Kühlbetrieb.

Im Stand-by Betrieb haben Sie mit dem Display folgende Möglichkeiten:

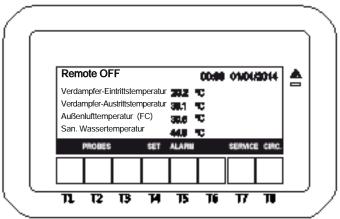
- Eingestellte Werte (SET) kontrollieren, Temperaturen (PROBES) auszulesen
- Alarme, Service und Informationen (teilweise Passwort erforderlich) durchsehen.
- · Bei Fernabschaltung steht auf dem Display OFF .


Sollte es erforderlich sein die Anlage Ein-oder Auszuschalten, benutzen Sie dafür nie den Hauptschalter (Sicherung für die Anlage), sondern die Tasten wie oben beschrieben. Beide Hauptsicherungen sollten nur benutzt werden, um die Anlage vom Stromnetz zu trennen, wenn z. B. Wartungsarbeiten, Reparaturen, oder dauerhafter Außerbetriebnahme, usw. notwendig sind. Ansonsten wird die Ölsumpfheizung nicht mit Strom versorgt und beim Start können Verdichter ernsthaft beschädigt werden. Außerdem sind ohne Spannung sämtliche Schutzfunktionen deaktiviert und führen zum sofortigen Verlust der Gewährleistung.



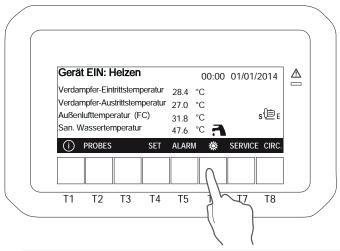
6.1.2 Betriebsart Heizen und/oder Kühlen

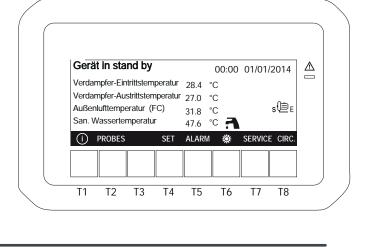
Das Display zeigt Ihnen die jeweilige Betriebsart an die von Ihnen gewählt wurde:


HEIZBETRIEB

6.1.3 Fernkontakt über einen digitalen Eingang

Wenn die Anlage über einen digitalen Eingang ausgeschaltet wurde, zeigt das Display:

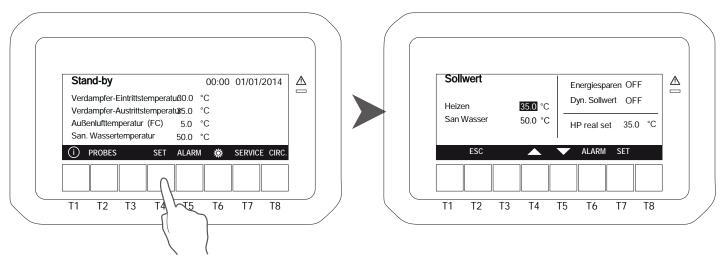


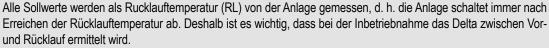

Wenn der digitale Eingang nicht aktiv ist, befindet sich die Anlage in der Betriebsart AUS

- Der Fernkontakt hat Priorität vor der Tastatur
- Die Anlage kann nur Einschalten wenn der Eingang aktiv ist und Ausschalten wenn der Eingang deaktiviert ist.

6.2 Ausschalten

Um die Anlage während dem Betrieb auszuschalten drücken Sie die Taste 🎇 oder 👺 so lange bis Stand-by erscheint..




6.3 Sollwerte

Um die Sollwerte zu verändern drücken Sie bitte die Taste SET .

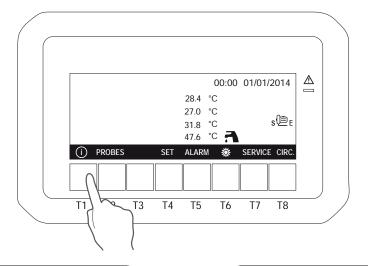
Um die Werte zu verstellen bewegen Sie den Cursor mit T4; drücken T7 um auszuwählen, wenn der Wert blinkt verändern Sie mit den Tasten T4 oder T5. den Wert. Wenn Sie den Wert erreicht haben drücken Sie die T7 Taste um den Wert zu bestätigen. Der Cursor geht dann automatisch zum nächsten Sollwert und wenn Sie den auch verstellen möchten, wiederholen Sie den Vorgang wie oben beschrieben. In dieser Ansicht können Sie ebenfalls sehen (aber nicht verstellen) ob die Energiesparen oder der Dynamische Sollwert aktiv ist.

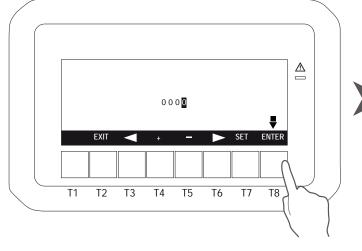
Drücken Sie anschließend die Taste T2 um wieder ins Hauptmenü zurück zu kommen.

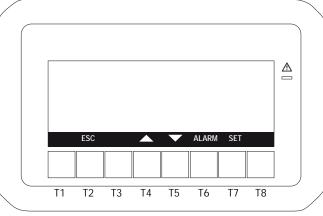
Zum Beispiel: Wenn Trinkwasser mit 45° C erwünscht ist und das Δt (Delta VL-RL) hat 5° C, dann muss der Sollwert (RL) auf 40° C. Wenn der Δt aber 8° C ist, dann muss der Sollwert (RL) bei 37° C eingestellt werden. Wenn zum Beispiel das kalte Wasser mit 15° C benötigt wird und die Δt ist 5° C, dann muss der Sollwert (RL) auf 20° C gestellt werden. Wenn der Δt aber 8° C ist, dann muss der Sollwert (RL) bei 23° C eingestellt werden.

6.3.1 Einstellbare Parameter

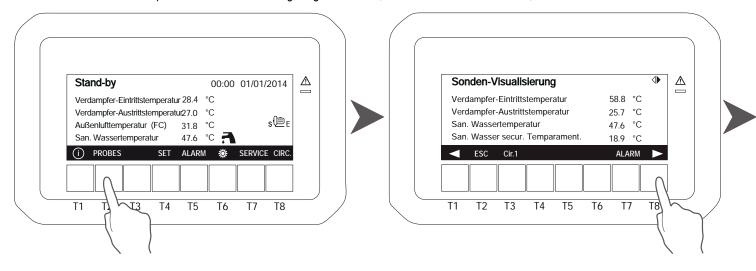
Die einstellbaren Sollwerte, die durch den Endbenutzer verändert werden können, sind:


Funktion	zu begrenzende Anpassung	Standardwert		
Heiz-Sollwert	10÷55°C	35°C		
Warmwasser-Sollwert	20÷55°C	50°C		
Kühl-Sollwert	10÷25°C	23°C		
Sollwert-Ausgleich	0÷15°C	10°C		
Kennwort	(Kontaktieren Sie das Unternehmen)			

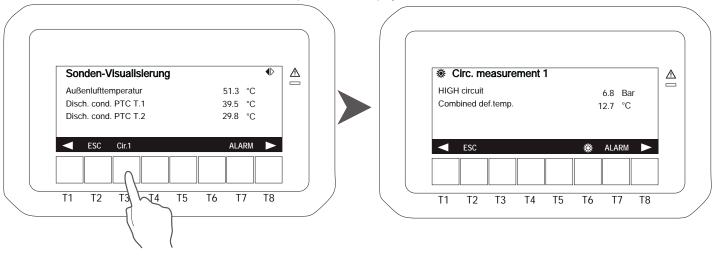



Die Geräte werden mit einem sehr anspruchsvollen Leitsystem mit vielen anderen Parametern, die nicht verstellbar durch den Endverbraucher sind, geliefert; Diese Parameter sind von dem Hersteller mit einem Kennwort geschützt.

6.3.2 IP-Adresse ändern

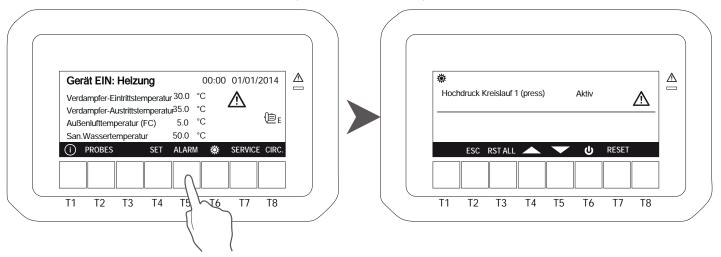


Um andere Netzwerkelemente wie Gateways, Subnetze zu ändern, stellen Sie eine Verbindung zu einem Control Panel her. Ein Notebook und ein Netzwerkkabel sind die notwendige Ausstattung.



6.4 PROBES Taste

Damit Sie sämtliche Temperaturen der Sensoren angezeigt bekommen, drücken Sie bitte die T2 Taste;



Durch Drücken der Taste T8 sehen Sie die weiteren Temperaturen im Display

Drücken Sie anschließend die Taste T2 um wieder ins Hauptmenü zurück zu kommen.

6.5 ALARM taste

MTEC.4002.DE-E-122 Betriebs und Wartungshandbuch LHA Serie Deutsch

Es gibt drei Arten von Meldungen:

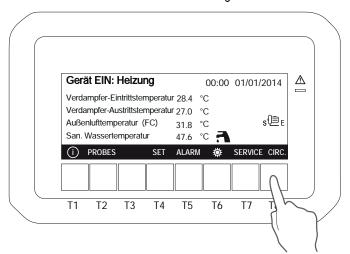
- Reset: in diesem Fall wird der Alarm nicht mehr aktiv und können zurückgesetzt werden. Setzen Sie den Cursor auf die Benachrichti gung für die T4 und T5 Tasten und drücken Sie T7.
- Kennwort: in diesem Fall der Alarm nicht mehr aktiv, aber benötigen Sie ein Passwort, um es zurückzusetzen (kontaktieren Sie bitte die Firma).
- · Aktiv: Der Alarm ist immer noch aktiv.

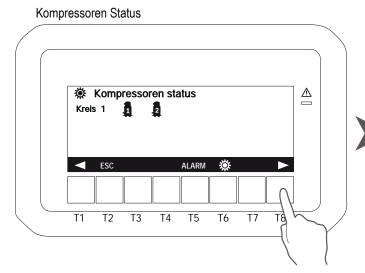
Wenn es mehrere Alarme, können Sie sie alle auf einmal durch Drücken T3 zurückgesetzt. Im Fall das alle Alarme gelöscht sind, bleiben diese im Alarmprotokoll erhalten (siehe 6.7.7).

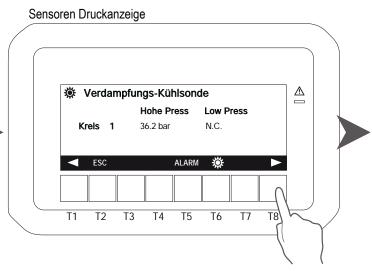
6.6 CIRC taste

Drücken CIRC können die verschiedenen Parameter des Geräts zu lesen:

Wenn Sie die Tasten T1 und T8 gelangen Sie zur nächsten Seite des Displays.

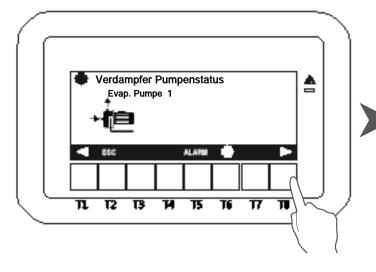

Verdichter: das Display zeigt an welche Verdichter aktiv sind.

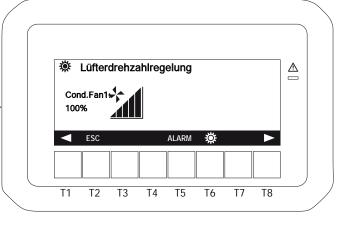

Schwarz hinterlegt: Verdichter in Betrieb Weiß mit schwarzem Rand: Verdichter aus

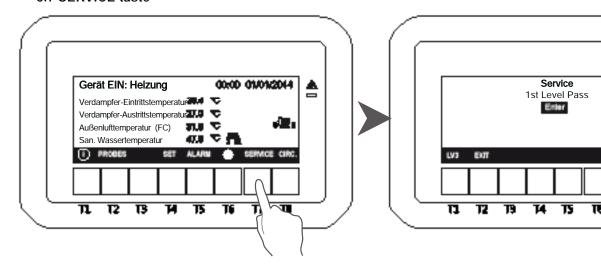

Schwarz blinkend: Verdichter in der Startphase (Zeitverzögert)

Bei der Verwendung von Drehzahl geregelten Verdichtern (z. B. Inverter- oder Schraubenverdichter), erscheint bei dem Verdichter Symbol eine Anzeige in % der Drehzahl.

Bei der Verwendung von ON/OFF Verdichtern erscheint keine zusätzliche Anzeige neben dem Verdichter Symbol.

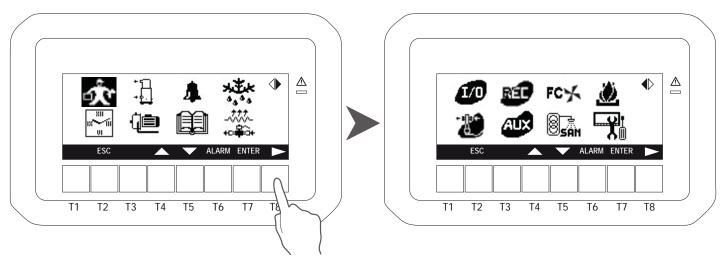





Wasserpumpe Anzeige

Lüfterdrehzahlregelung

6.7 SERVICE taste



Um in dieses Menü T7 zu gelangen.

Programmeben an, welche verschiedenen Sicherheitseben unterstellt sind; drücken Sie die T7 Taste um in die erste Ebene zu gelangen oder T1 und T8 um die weiteren zu erreichen.

Drücken Sie die T7 Taste um in die folgenden Menüs wie unten abgebildet zu gelangen:

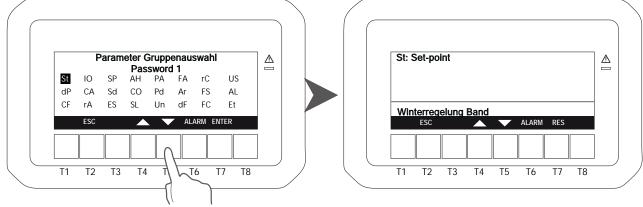
文	Parameter (Servicetechniker)		Einspritzventil
IX VIII	Datum und Uhrzeit	110	I / O Status (Ein- und Ausgänge)
÷ []	Verdichter	REP	Wärmerückgewinnung (nicht verfügbar)
	Wasserpumpen	AUX	Hilfsausgänge (Relais)
^	Alarme aktiv	FC⊀	Freikühlung (wenn verfügbar)
	Alarmprotokoll	®sÃn	Trinkwasser (San. Wasser)
* <u>*</u> **	Abtauvorgang	٨	Zusatzheitung (wenn verfügbar)
-‱- +c ¥ 3+	Ventile und Heizungen	X	Einstellungen Display

Drücke T8 um weitere Menüs zu öffnen.

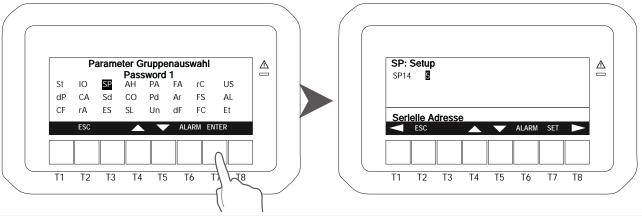
Um die Anzeige zu bewegen drücken Sie die T4 und T5 Tasten und dann T7 um in den gewünschten Menüpunkt zu gelangen.

Um die Werte der Parameter zu ändern, drücken Sie die TastenT4 oder T5 und wenn Sie den Parameter erreicht haben drücken Sie die SET Taste, der Wert beginnt zu blinken. Mit den Tasten T4 oder T5 können Sie den Wert verstellen. Danach drücken Sie wieder die SET Taste um den Wert zu betätigen.

6.7.1 Parameter Einstellungen Service

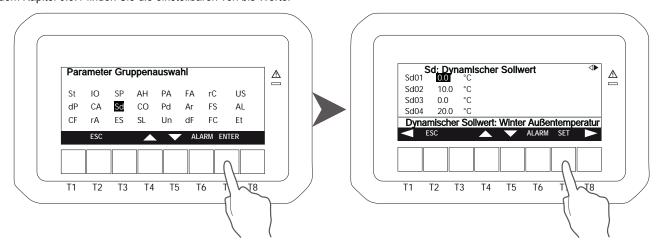

Um in dieses Menü zu gelangen drücken Sie die T7 Taste.

Mit den Tasten T4 und T5 können Sie nun durch verschiedene Gruppen von Parametern durch scrollen. Mit dem zuvor eingegeben Passwort 1 können Sie aber lediglich Parameter der Gruppe (St), (Sd) oder (FS) verändern, die Legende der Parameter finden Sie in der Tabelle. Um in die Programmebene LV2 und für Servicefachkräfte oder in die Programmebene LV3 (nur Werkskundendienst) zu gelangen, müssen andere Passwörter verwendet werden, die nur ab Werk zu bekommen sind.


Hier die Liste der Abkürzungen und deren Bezeichnung der einzelnen Parameter

Code	Bezeichnung	Code	Bezeichnung
ST	Temperatureinstellungen	FA	Ventilatorparameter
DP	Bedienungsanzeigeoptionen	Ar	Frostschutzheizungseinstellungen
CF	Konfiguration der Parameter	dF	Abtauparameter
SP	Maschinen setup	rC	Nicht verfügbar
Sd	Dynamische Sollwertverschiebung	FS	Sanitär-Einstellungen
ES	Energiespareinstellungen und Timer	FC	Nicht verfügbar
AH	Zusatzheizungsparameter	US	Aux- Ausgänge
CO	Verdichtereinstellungen	AL	Alarmparameter
SL	Stufenlose Verdichterparameter	Et	Nicht verfügbar
PA	Pumpeneinstellungen	10	Ein-/ Ausgangsparameter Konfiguration
Pd	Nicht verfügbar	CA	Nicht verfügbar
Un	Leistungsreduktionseinstellungen	RA	Analogeingänge Einstellungen

Die verfügbaren Werte in der Gruppe (St) "Sollwert" bedeuten: (St01) Sommer-Sollwert und (St04) Winter-Sollwert.

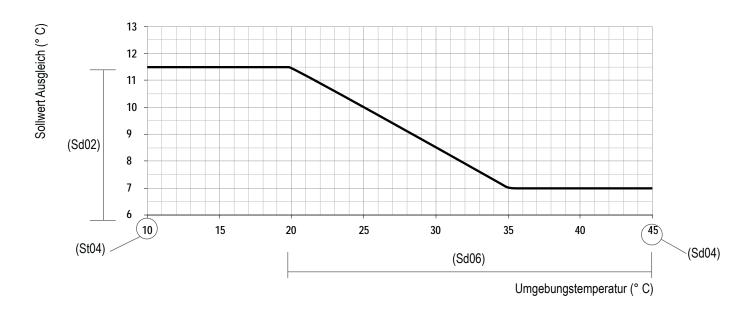

Parametereinstellung SP: Ermöglicht die Veränderung der seriellen Adresse

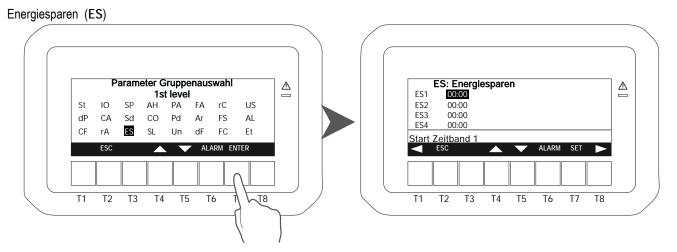
Zur Veränderung des Wertes die Taste T7 drücken bis der angezeigte Wert blinkt und mit den T4 und T5 verändern, dann mit T7 Einstellung übernehmen.

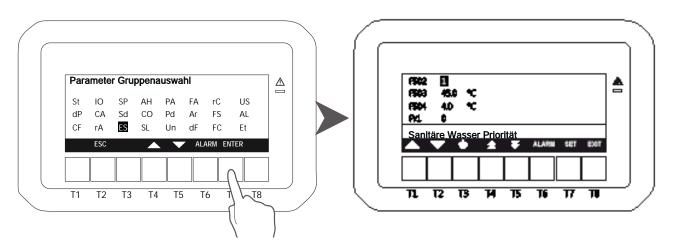
Die verfügbaren Werte in der Gruppe (Sd) Dynamischer Sollwert bedeuten unten als Beispiel: (Sd01) Dynamischer Sollwert – Sommer, (Sd02) Dynamischer Sollwert – Winter, (Sd03) Dynamischer Sollwert: Sommer Außentemperatur, (Sd04) Dynamischer Sollwert: Winter Außentemperatur. Mehr Informationen erhalten Sie beim Durchblättern dieser Gruppe Sd05 und Sd06 mit der Pfeil runter Taste und unter dem Kapitel 6.3.1 finden Sie die einstellbaren von bis Werte.

Witterungsgeführte Funktion

Diese Funktion macht es möglich, die Witterungssensoren zu aktivieren, um die Effizienz der Einheit zu optimieren. Das ändert den Sollwert in Bezug auf die externe Lufttemperatur automatisch: eine Berechnung basiert auf dem Sollwert, um einen revidierten Wert von Sollwert für höhere Umgebungsbedingungen (siehe Beispiel unten) zu bieten. Diese Funktion macht es möglich, Energie zu sparen und die Einheit in rauen Umgebungsbedingungen zu betreiben. Diese Funktion ist nur aktiv im Heizbetrieb.

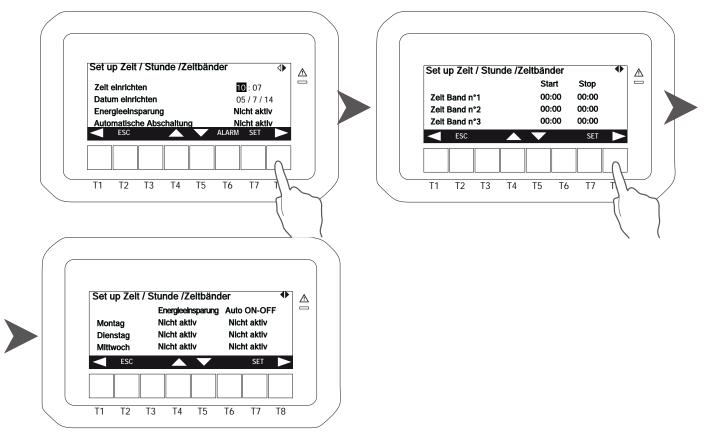



Alle Geräte werden ab Werk mit einer aktivierten Witterungsgeführten Funktion ausgelierfert. Die Steigung beginnt bei +20°C mit einem Differential von 10°C.


Wird der SET-Knopf 2mal gedrückt, wird der Energiesparmodus aktiviert und am unteren Rand des Displays erscheint SEtTR (witterungsgeführter Sollwert); der spezifische Sollwert berechnet von der Mikroprozessorsteuerung für den gemessenen Zustand der Umgebungstemperatur.

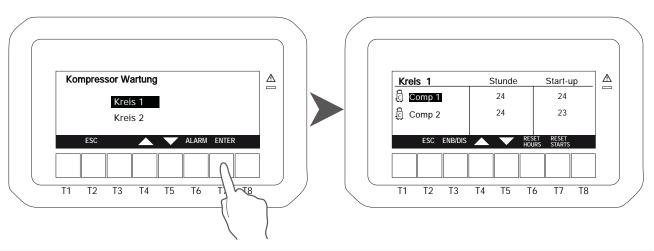
Die verfügbaren Werte der Parametergruppe (FS) Trinkwasser sind: Priorität Trinkwasser (FS02), Trinkwasser Sollwert (FS03), Hysterese Trinkwasser (FS04).

6.7.2 Datum und Uhrzeit einstellen


Wählen Sie dieses Symbol

mit den Tasten T4 oder T5 aus und drücken dann die T7 Taste.

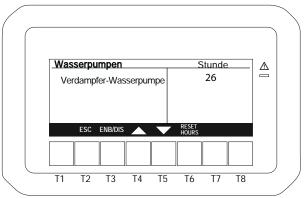
Um Auszuwählen welchen Wert Sie verändern möchten drücken Sie die Tasten T4 oder T5 und dann T7. Der Wert blinkt, verstellen Sie den Wert mit den Tasten T4 oder T5 und drücken Sie anschließend die T7 Taste um den Wert zu bestätigen.


Wenn Sie die Taste drücken, können Sie auf der nächsten Seite ablesen ob die Energieeinsparung oder die Automatische Abschaltung aktiv oder nicht aktiv ist. Um Start- oder Stoppzeiten zu ändern benötigen Sie ein Passwort. Wenn Sie kein Passwort haben dient dies lediglich als Information.

6.7.3 Verdichter Wartung

Wählen Sie dieses Symbol + mit den Tasten T4 oder T5 aus und drücken dann die T7 Taste.

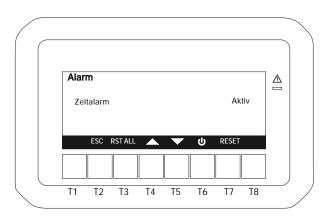
Es ist möglich die Stunden des Verdichters sowie die Startzeiten auszulesen. Wählen Sie den Kältekreislauf mit den Tasten T4 oder T5 und drücken Sie dann die T7 Taste damit Sie die Werte ablesen können. Die Taste T3 kann nur vom Service Personal durchgeführt werden.



6.7.4 Wasserpumpen Primärseite

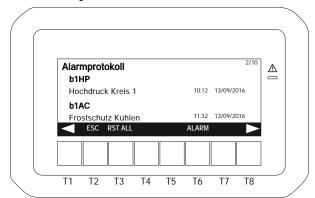
Wählen Sie dieses Symbol wit den Tasten T4 oder T5 aus und drücken dann die T7.

Es ist möglich die Stunden der Wasserpumpen auszulesen, bzw. Stunden für Heizen oder Kühlen und Trinkwasser. Die Funktion T6 ist nur für Service Personal zugänglich.



6.7.5 Alarmanzeige

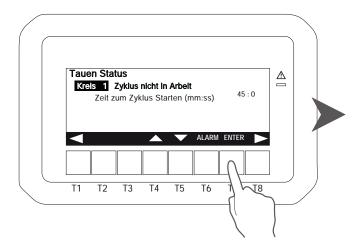
Wählen Sie dieses Symbol

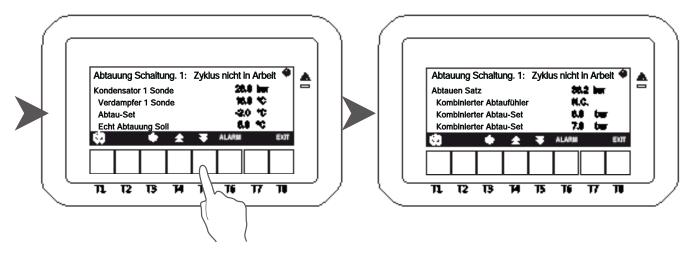

mit den Tasten T4 oder T5 aus und drücken dann die T7.

6.7.6 Alarmvergangenheit

Wählen Sie dieses Symbol mit den Tasten T4 oder T5 aus und drücken dann die T7.

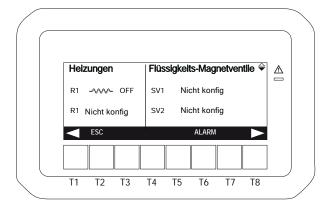
Durch Drücken der Taste T7 und T8 können Sie bis zu 99 Alarme aus der Vergangenheit auslesen. Die Funktion alle Alarme zu löschen T3 ist nur durch das Service Personal erlaubt in Verbindung mit einem Passwort.




6.7.7 Abtauen

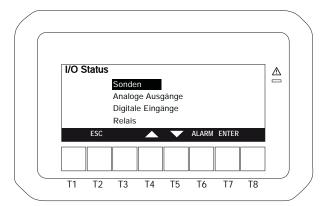
Wählen Sie dieses Symbol mit den Tasten T4 oder T5 aus und drücken dann die T7.

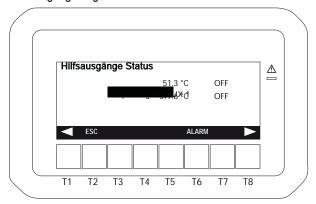
Für jeden Kältekreislauf ist es möglich den Status von einem Abtauvorgang zu sehen. Nachdem Sie den Kältekreislauf gewählt haben, drücken Sie die T7 Taste. Sie sehen dann verschiedene Informationen zum Abtauvorgang wie unten im Display beschrieben.



Drücken Sie die Tasten T4 oder T5 um verschiedene verfügbare Werte auszulesen.

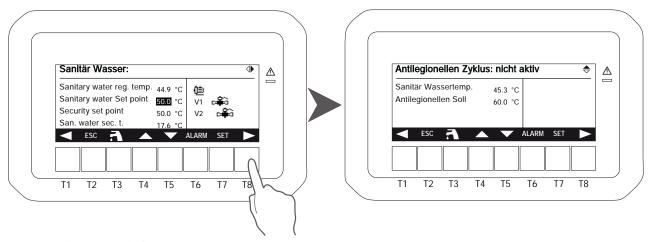
6.7.8 Ventile und Begleitheizungen


Wählen Sie dieses Symbol mit den Tasten T4 oder T5 aus und drücken dann die T7. Es ist möglich Informationen über Ventile und Begleitheizungen ob aktiv oder nicht aktiv zu erhalten.


6.7.9 I/O Status (Eingang /Ausgang)

Wählen Sie dieses Symbol mit den Tasten T4 oder T5 aus und drücken dann die T7.
Hier können Sie folgende Informationen abrufen: Sonden, Analoge Ausgänge, Digitale Eingänge und Relais.

6.7.10 Hilfsausgang


Wählen Sie dieses Symbol mit den Tasten T4 oder T5 aus und drücken dann die T7. Hiermit können die Informationen der Hilfsausgänge abgerufen werden.

6.7.11 Trinkwasser

Wählen Sie dieses Symbol Sin mit den TastenT4 oder T5 aus und drücken dann die T7.

Hier können Sie Informationen vom Trinkwasserbetrieb abrufen. Durch Drücken der T7 Taste können Sie die Werte verändern und dann nochmals mit T7 bestätigen

6.8 Akustisches Signal abschalten

Durch Drücken und Loslassen einer der Tasten; wird das Signal abgeschaltet auch wenn der Alarmzustand bestehen bleibt.

7. PFLEGE DES GERÄTS

7.1 Allgemeine Warnungen

Seit dem 01. Januar 2015 gilt die Verordnung (EU) Nr. 517/2014 über fluorierte Treibhausgase und zur Aufhebung der Verordnung (EG) Nr. 842/2006 (neue F-Gas-V). Dieses Gerät unterliegt den folgenden rechtlichen Verpflichtungen, die von allen Betreibern erfüllt werden müssen:

- (a) Allgemeine Emissionsminderungspflicht (Art. 3 Abs. 1 und 2);
- (b) Reparaturpflicht (Art. 3 Abs. 3); Pflicht zu Dichtheitskontrollen (Art. 4 Abs. 1);
- (c) Pflicht für Leckageerkennungssysteme (Art. 5);
- (d) Aufzeichnungspflichten (Art. 6 Abs. 1 2);
- (e) Pflicht zur Prüfung, ob ein mit der Installation, Instandhaltung, Wartung, Reparatur oder Außerbetriebnahme beauftragtes Unternehmen die erforderlichen Zertifizierungen besitzt (Art. 10 Abs. 11);
- (f) Beachtung der Kaufs- und Verkaufsvoraussetzungen (Art. 11 Abs. 4).

Die Wartung ist wichtig um:

- Den Betrieb des Geräts effizient zu halten
- Fehlmeldungen zu verhindern
- Die Lebensdauer der Geräte zu verlängern

Es ist ratsam, ein Berichtsheft für das Gerät zu führen, welches alle durchgeführten Operationen an dem Gerät detailliert beschreibt und damit die Fehlersuche erleichtert.

Die Wartung muss unter Einhaltung aller Anforderungen der vorausgehenden Kapitel durchgeführt werden.

Verwenden Sie eine vorschriftsmäßige persönliche Schutzausrüstung da z.B. Kompressorgehäuse und Druckleitungen sehr heiss werden können. Lamellenspulen sind scharfkantig und stellen eine Gefährdung durch Schneiden dar.

Wenn das Gerät nicht während der Winterzeit benutzt wird, kann das in den Rohren enthaltene Wasser einfrieren und zu schweren Schäden führen. In diesem Fall lassen Sie das Wasser vollständig aus den Leitungen, und überprüfen Sie dass alle Teile der Schaltung leer sind einschließlich aller internen oder externen Auffanggefäße und Überlaufrohre.

Bei Ersatz eines Bauteils der Maschine, aus gewöhnlichen und außergewöhnlichen Gründen, ist Material mit gleicher oder besserer Charakteristik, als das zu Ersetzende, zu verwenden. Die gleiche oder höhere Leistung oder Stärke steht im Bezug zur Charakteristik, welche keine Nachteilige Auswirkung auf Sicherheit, Gebrauch, Handhabung, Lagerung, den Druck oder Temperatur hat, als diese vom Hersteller vorgesehen ist.

Die Absperrungen in der Maschine sind vor Inbetriebnahme zu öffnen. Im Falle, dass es notwendig ist, den Kältekreislauf durch die Ventile abzusperren, sind Maßnahmen zu treffen, um einen Anlauf/ Start, auch unbeabsichtigt, zu vermeiden. Die Absperrungen sind zu markieren, sowhl am Kältekreis, als auch im Schaltschrank. Jedenfalls sollten Absperrungen/ Ventile möglichst kurzzeitig geschlossen bleiben.

7.2 Zugang zum Gerät

Wenn der Zugriff auf das Gerät einmal installiert ist, sollten möglicht nur Betreiber und Techniker authorisiert werden. Der Eigentümer und gesetzlicher Vertreter des Gerätes ist die Firma, Organisation oder Person, wo die Maschine installiert ist.

Sie sind voll verantwortlich für alle Sicherheitsvorschriften die in dieser Bedienungsanleitung beschrieben werden. Wenn es nicht möglich ist, den Zugang zu der Maschine von außen zu verhindern, muss der Bereich um das Gerät mindestens 1,5 Meter von der Außenflächen eingezäunt werden, in dem nur Betreiber und Techniker arbeiten können.

7.3 Wartungsplan

Der Eigentümer/ Anlagenbetrieber hat sich darum zu kümmern, dass eine regelmäßige, entsprechende Wartung/ Inspektion der Anlage vor Ort durchgeführt wird. Die Häufigkeit ist vom Anlagentyp, Alter und Gebrauch der Anlage abhängig, und ist jedenfalls gem. dem im Handbuch angeführtem Intevall durchzuführen.

Das Service während der Lebensdauer einer Anlage, speziell auch die Lecksuche, sicherheitstechnische Überprüfung und die Servicearbeiten an der Anlage sind nach nationalen Vorschriften und Regelungen durchzuführen.

Falls Leckageortungssysteme installiert sind, sind diese mindestens jährlich zu überprüfen um deren Funktion zu gewährleisten.

Während den Betrieb und der Lebensdauer der Maschine muss die Einheit in Übereinstimmung mit den lokalen Vorschriften periodische geprüft werden. Sollten keine anderen Normen vorgeschrieben sein, müssen die in der folgenden Tabelle (siehe EN 378-4, all.D) angegebenen Hinweise, je nach Situation, beachtet werden.

SITUATION	Sichtprüfung	Druckprobe	Dichtheitsprüfung
Α	X	X	X
В	X	X	X
С	X		X
D	X		X

- Inspektion, nach einem Eingriff in deren die Möglichkeit besteht das irgend welche Auswirkungen auf den mechanischen Widerstand verursacht wurden. Oder, eine Änderung der Nutzung der Einheit oder nach einem Stillstand von mindestens zwei Jahre; müssen alle nicht angemessenen Komponenten ausgetauscht werden. Es müssen keine Druckproben, als den geplanten Betriebsdruck vorgenommen werden.
 - Inspektion, nach einer Reparatur oder nach einer Änderung des Systems oder von dessen Komponenten. Die Dichtheitsprüfung kann nur auf die betroffenen Bauteile eingeschränkt werden, sollte aber ein Kältemittelverlust hervortreten, muss das komplette System auf Dichtheit geprüft werden.
- Inspektion, nach der Installation von einer Position welche anders ist als die Originale. Sollte die Möglichkeit bestehen das diese Änderung irgendwelche Auswirkungen auf den mechanischen Widerstand der Maschine haben könnte, muss Punkt A beachtet werden.
- Lecksuche, sollte man den Verdacht haben das Kältemittel aus dem Kreislauf austritt. Muss das komplette System auf den Verlust geprüft werden (der Einsatz von Geräten um den Verlust hervorzuheben ist empfohlen).

В

Sollte ein Defekt auftreten welches die Zuverlässigkeit der Maschine in frage setzt, darf die Einheit nicht ohne die Beseitigung dieses Defektes wieder eingeschaltet werden.

7.4 Regelmäßige Überprüfungen

Die Inbetriebnahme-Maßnahmen sollten in Übereinstimmung mit allen Anforderungen der vorherigen Paragraphen durchgeführt werden.

Alle Operationen, die in diesem Kapitel beschrieben wurden, dürfen nur von geschultem Personal durchgeführt werden. Stellen Sie sicher, dass vor Beginn der Service-Arbeiten am Gerät die Stromversorgung unterbrochen ist. Die obere Abdeckung und Druckleitung des Verdichters ist in der Regelsehr heiss. Es muss bei der Arbeit in ihrer Umgebung darauf geachtet werden. Aluminium-Kühlrippen sind sehr scharf und können schwere Verletzungen verursachen. Es muss bei der Arbeit in ihrer Umgebung darauf geachtet werden. Nach der Wartung, montieren Sie wieder die Abdeckplatten und befestigen Sie diese mit Feststellschrauben.

7.4.1 Elektrsiche anlage und regelung

Augustibranda aparationa			Perio	dizität		
Auszuführende operatione	Jeden Monat	Jeden 2 Monate	Jeden 6 Monate	Jedes Jahr	Jede 5 Jahre	Wenn Notwendig
Prüfen Sie das die Einheit problemlos läuft und das keine Fehlermeldungen vorhanden sind	Х					
Sichtprüfung	Х					
Prüfen Sie di Vibrationen und den Geräuschepegel der Einheit				Χ		
Prüfen Sie die Funktionalität der Sicherheitseinrichtungen				Χ		
Prüfen Sie die Leistung der Einheit				Х		
Prüfen Sie die Stromaufnahmen der Verdichter, der Pumpen usw.				Х		
Prüfen Sie die Stromversorgung der Einheit			Х			
Prüfen Sie die Verkabelung in der Klemmleiste			Х			
Prüfen Sie die Isolierung der elektrischen Verkabelung				Х		
Prüfen Sie den Statuts und die Funktionalität der Schütze				Χ		
Prüfen Sie die Funktionalität des Mikroprozessors			Х			
Putzen Sie die Elektrischen Komponente vor Staub				Х		
Prüfen Sie den Betrieb und die Kalibrierung der Sonden und Aufnehmer				Х		

7.4.2 Kondensationsregister und Ventilatoren

		Periodizität						
Auszuführende operatione	Jeden Monat	Jeden 2 Monate	Jeden 6 Monate	Jedes Jahr	Jede 5 Jahre	Wenn Notwendig		
Sichtprüfung	Х							
Reinigen Sie die Lamellenbatterie (1)			Х					
Prüfe Durchfluss und/ oder Leckagen	Х							
Überprüfe korrekte Funktion des Strömungswächters			Х					
Reinige den Schmutzfänger im Wasserkreislauf (3)			Х					
Geräuschepegel und Vibrationen der Lüfter prüfen				Χ				
Die Stromanschlüsse der Lüfter prüfen			Х					
Stromspeisung der Lüfter prüfen				Χ				
Prüfe Funktion und Einstellungen der Ventilator- Drehzahlregelung (falls vorhanden)				Х				
Prüfe Funktion des 4- Wege- Ventils (falls vorhanden)				Х				
Prüfe auf Vorhandensein von Luft im Hydraulikkreislauf	Х							
Prüfe Farbe der Indikatoren in der Flüssigkeitsleitung				Х				
Überprüfe auf Dichtheit und Undichtheiten im Kältekreislauf (2)						Х		

(1) Bei Installation in Starkwindgebieten, in Küsten- oder Wüstenregionen oder vergleichbaren Gegenden, nahe Flughäfen, Industriebetrieben oder entsprechend in Gebieten mit starker Luftverschmutzung, ist der Inspektionintervall, entsprechend der Belastung, zu verkürzen, (z. B.: 3 Monate).

⁽²⁾ Bei Arbeiten am Kältekreislauf ist es notwendig die EU- Reg- 517/2014, "Verordnung über fluorirte Treibhausgase" einzuhalten.

 $^{(3)}$ Es kann mit einer höheren Frequenz (auch wöchentlich) ausgeführt werden, je nach Δt .

7.4.3 Verdichter

		Periodizität						
Auszuführende operatione	Jeden Monat	Jeden 2 Monate	Jeden 6 Monate	Jedes Jahr	Jede 5 Jahre	Wenn Notwendig		
Sichtprüfung				Х				
Prüfen Sie di Vibrationen und den Geräuschepegel der Verdichter				Х				
Prüfen Sie die Stromversorgung der Verdichter			Х					
Prüfen Sie die Stromverbindung der Verdichter				Х				
Prüfe den Ölstand am Ölschauglas.			Х					
Prüfe die Kompressorheizungen ob eingeschaltet und deren Funktion				Х				
Prüfen Sie den Status und die Verkabelung in der Klemmleiste der Verdichter			Х					

Tägliche und wöchentliche Inspektionen können vom Eigentümer/ Betrieber der Anlage durchgeführt werden. Alle anderen Arbeiten sind von authorisierten und geschultem Personal vorzunehmen.

Jegliche Art der Reinigung ist untersagt, falls die Anlage nicht vom Stromnetz getrennt ist. Das Berühren der Anlage ohne oder mit nassem oder feuchtem Schuhwerk oder feuchter Haut ist untersagt.

Arbeiten am Kältekreislauf sind durch qualifiziertes, berechtigtes und trainiertes Personal durchzuführen, wie von den örtlichen oder nationalen Bestimmungen vorgesehen.

Vor Inbetriebnahme ist es erforderlich alle, in den vorher angeführten Punkten, beschriebenen Arbeiten vorzunehmen. Angeführte Arbeiten sind vor Inbetriebnahme abzuschließen. Eine Checkliste wird auf Anfrage durch den Kundendienst übermittel. Eine Inbetriebnahme, die durch den Kunden verlangt wird, wo zuvor die angeführten Arbeiten (zB.: Mediumanalyse usw.) nicht abgeschlossen sind, erfolgt auf Risiko des Kunden. Bei Start von Anlagen, deren Installationen nicht abgeschlossen und überprüft sind, verfällt jegliche Gewährleistung/ Garantieanspruch.

7.5 Reparatur des Kältekreislaufs

Wenn der Kältekreislauf entleert werden soll, muss das Kältemittel mittels der richtigen Ausrüstung zurückggewonnen werden.

Zur Lecksuche sollte das System mit Stickstoff über eine Gasflasche mit einem Druckminderventil aufgeladen werden, ein Druck von bis zu 15 bar erreicht ist. Jede Undichtigkeit wird mit einem Blasenlecktest erkannt. Wenn Blasen erscheinen, entladen Sie den Stickstoff aus dem Kreislauf bevor Sie mit dem Löten unter Verwendung geeigneter Legierungen beginnen.

Verwenden Sie niemals Sauerstoff anstelle von Stickstoff: Es besteht die Gefahr von Explosionen.

Vot Ort montierte Kältekreise müssen vorsichtig montiert und gewartet werden, um Fehlfunktionen zu vermeiden.

Deshalh:

- Vermeiden Sie Rückfettung mit Produkten, die anders als angegeben sind und die in den Kompressor vorinstalliert sind.
- Im Falle eines Gaslecks der Maschinen verwenden Sie Kältemittel R407C, auch wenn nur eine partielle Undichtigkeit besteht, stocken Sie nicht auf. Die gesamte Ladung muss wiederhergestellt werden, das Leck muss repariert und ein neues Kältemittel muss in den Kreislauf abgewogen werden.
- Beim Austauschen eines beliebigen Teils des K\u00e4ltemittelkreislaufes, lassen Sie es nicht l\u00e4nger als 15 Minuten ausgesetzt.
- Es ist wichtig beim Austausch eines Verdichters, dass die Aufgabe innerhalb der angegebenen Zeit nach dem Entfernen der Gummi Verschlusskappen erledigt wird.
- Beim Austausch des Verdichters ist es ratsam, das Kühlsystem mit entsprechenden Produkten die einen Filter für Säure beinhalten zu waschen.
- Den Verdichter nicht unter Vakuum einschalten.

8. AUSSERBETRIEBNAHME

8.1 Stilllegung des Gerätes

Alle Vorgänge müssen vor Stilllegung durch autorisiertes Fachpersonal in Übereinstimmung mit den geltenden nationalen Rechtsvorschriften des Landes in dem das Gerät arbeitet, durchgeführt werden.

- Vermeiden Sie Verschüttungen oder Leckagen in die Umwelt.
- Bergen Sie vor dem Abschalten des Geräts folgende Inhalte:
 - Das Kältemittel;
 - Glykol-Gemisch in dem Hydraulikkreis;
 - · Das Schmieröl des Verdichters.

Vor der Stilllegung kann die Maschine im Freien gelagert werden, vorausgesetzt das elektrische Feld, der Kältekreislauf und die hydraulische Schaltung werden unbeschädigt verschlossen.

8.2 Entsorgung, Verwertung und das Recycling

Der Rahmen und Komponenten sollten wenn unbrauchbar auseinander genommen und insbesondere Kupfer und Aluminium die sich in großen Mengen in der Maschine befinden sollten nach ihrer Art sortiert werden.

Alle Materialien müssen gemäß nationalen Vorschriften verwertet oder beseitigt werden.

Der Kältekreis der Einheit enthält das Schmiermittel Öl, dass zu einer fachgerechten Entsorgung verpflichtet.

8.3 WAEE Richtlinie (nur EU)

Das Entsorgungssymbol auf der Etikette indiziert, das das Produkt den Richtlinien der Elektro- Altgeräte Entsorgungsrichtlinie entspricht.

Eine Entsorgung des Gerätes in der Umwelt oder eine illegale Lagerung in der Umwelt ist wegen der entsprechenden gesetzlichen Regelung strafbar.

Dieses Gerät ist in der WEEE- Richtlinie 2012/19/EU bezüglich Entsorgung von Elektroaltgeräten enthalten.

Eine Entsorgung mit dem Hausmüll ist zu unterlassen da es aus verschiedenen, recykelbaren Materialien die zur Wiederverwertung bestimmt sind, hergestellt ist.

Das Produkt ist nicht potentiell schädlich für die Gesundheit und Umwelt, da es keine gefährlichen Substanzen, gem. Direktive 2011/65/EU (RoHS), enthält, falsch entsorgt hat es allerdings Auswirkungen auf das Ökosystem.

Lesen sie die Anleitung der Alage Aufmerksam vor der Erstinbetriebnahme durch. Eine Verwendung für andere als beschriebene Anwwendungen, für die es entwickelt wurde, ist untersagt. Es besteht die Gefahr eines Stromschlages bei unsachgemäßer Verwendung.

9. DIAGNOSE UND PROBLEMBEHANDLUNG

9.1 Fehlersuche

Alle Geräte werden vor dem Versand in der Fabrik geprüft, jedoch kann während des Betriebs eine Unregelmäßigkeit oder ein Fehler auftreten.

FÜHREN SIE EIN ALARM-RESET ERST DURCH WENN SIE DEN FEHLER BEHOBEN HABEN. WIEDERHO-HLTE RESETS KÖNNEN ZU IRREPARABLEN SCHÄDEN AN DEM GERÄT FÜHREN.

Unit alarms				
Kode	Visualization	Alarm Beschreibung	Ursache	Lösung
ACF1 ACF19	Conf AL1Conf AL19	Konfiguration Alarm	Falsche Konfiguration der Mikroprozessor-Steuerung.	Kontaktieren Sie das Unternehmen.
AEFL	Plant side flow AL	Benutzer Strömungswächter Alarm	Vorhandensein von Luft und Schmutz in der Bediener- Hydrauliksystem.	Entlüften Sie das Hydrau- liksystem oder kontrollie- ren und reinigen Sie die Wasserfilter.
ACFL	Source side flow AL	Quellwasser- Strömungsschalter-Alarm (nur für Wasser/Wasser- Einheit)	Vorhandensein von Luft oder Schmutz im Hydrauliksy- stem der Quelle. (Nur Wasser/Wasser- Einheiten)	Entlüften Sie das hydrauli- sche Fichtensystem sorgfäl- tig oder prüfen und reinigen Sie das Wassersieb.
AEUn	Unload notify (evap.)	Verdichterentlastung Alarm (only units with more than 1 compressor)	Benutzer Wassertemperatur zu hoch.	Warten Sie, bis die Wassertemperatur niedriger ist.
AHFL	Sanitary water flow AL	Warmwasser Strömungswächteralarm	Vorhandensein von Luft und Schmutz im Hydrauliksystem.	Entlüften Sie das Hydrau- liksystem oder kontrollie- ren und reinigen Sie die Wasserfilter.

		Alarm Benutzer		
AP1AP10	Pb AL1 Pb AL10	Wassereintrittstemperatur Sensor	Falsche elektrische Verbindung, Sensor defekt.	Überprüfen Sie den elektrischen Anschluss des Sensors an die Klemmleiste. Sollte dies der Fehler sein, muss der Sensor ausge- tauscht werden.
AP11AP20	Pb1 AL e1Pb7 AL e1	Alarm Expansionssonde 1 (falls verwendet)		
AP21AP27	Pb1 AL e2Pb7 AL e2	Alarm Expansionssonde 2 (falls verwendet)		
AtC1	Cond.pump 1 overl	Überlastungsalarm für Verflüssiger Nr. 1 der Was- serpumpe (nur Wasser/Wasser- Einheiten)	Überlastung der Pumpe	Prüfen Sie den Hydrau- likkreislauf
AtC1	Cond.pump 2 overl	Verflüssigerunterstützung Nr. 2 Wasserpumpen-Über- lastungsalarm (falls verwendet) (nur Wasser/Wasser- Einheiten)	Überlastung der Pumpe	Prüfen Sie den Hydrau- likkreislauf
AtE1	Evaporator water pump 1 overload	Thermischer Alarm der Verdampferpumpe1	Überlastung der Pumpe	Prüfen Sie den Hydrau- likkreislauf
AtE2	Evaporator water pump 2 overload	Thermischer Alarm Verdampferpumpe2 (falls vorhanden)	Überlastung der Pumpe	Prüfen Sie den Hydrau- likkreislauf
AEht	Hi temp.evap.water inlet	Verdampfer-Wassereinlass hohe Temperatur	Verdampfer-Wassereinlass- Hochtemperaturalarm	Warten Sie, bis die Wasser- temperatur des Benutzers sinkt.
AEM1	E1 discon	Expansionsalarm	The expansion is used and lose communication with the expansion card.	Überprüfen Sie die Seriena- dresse der Expansion.
AEM2	E2 discon	Expansionsalarm		
AFFC	Antif AL FC	Frostschutz-Alarm bei Free- Cooling (falls vorhanden)	Vorhandensein von Luft oder Schmutz im Hydrauliksy- stem mit freier Kühlung	Kontaktieren Sie das Unternehmen.
Atrb	Boiler overl AL	Überlastungsalarm bei elektrischen Heizkesseln	Digital input Thermal heaters active.	Kontaktieren Sie das Unternehmen.
APS	Phases sequ AL	Phasensequenz-Alarm.	Digitale Eingabe Phasenfol- ge-Relais aktiv	Überprüfen Sie die Anschlüsse des Hauptschalters
AFr	Power supply freq.AL	Stromversorgungsfrequenz- Alarm	Die Stromversorgungsfre- quenz unterscheidet sich von der konfigurierten.	Kontaktieren Sie das Unternehmen.
ALc1	Generic AL1	Generic alarm 1		Kontaktieren Sie das Unternehmen.
ALc2	Generic AL2	Generic alarm 2		Kontaktieren Sie das Unternehmen.
Probe fault	Probe fault	Verdrahtungsalarm	Falsche elektrische Verbindungen. Fehlerhafte Sonde.	Überprüfen Sie den elektrischen Anschluss des Sensors an die Klemmleiste. Sollte dies der Fehler sein, muss der Sensor ausge- tauscht werden.

Stromkreis-Alarme				
Kode	Visualization	Alarm Beschreibung	Ursache	Lösung
B(n)HP	Hi press circ(n)	B1 HP Hochdruckschalter Kreis (n)	Im Heizbetrieb: Zu wenig Wasserdurchfluss im Kreislauf; Zu wenig Wasserdurchfluss im Warmwasserkreis. Im Kühlbetrieb: Eine unzureichende Belüftung an der Quelle Lüfter; Zu wenig Wasserdurchfluss im Warmwasserkreis.	Stellen Sie die richtige Nutzer Wasserdurchflussmenge ein. Stellen Sie die richtige Wasserdurchflussmenge im Brauchwasserkreis ein. Stellen Sie den richtigen Luftstrom am Ventilator ein. Stellen Sie die richtige Wasserdurchflussmenge im Brauchwasserkreis ein.
b(n)AC	Antif/lo temp.C(n) (DI - CH) Antif/lo temp.C(n) (AI - CH)	Frostschutz-Alarm Kreis (n) (Kühlbetrieb)	Eine zu niedrige Wassertem- peratur	Überprüfen Sie denTempe- ratur-Sollwert; Überprüfen Sie den Was- serdurchfluss.
b(n)AH	Antif/lo temp.C(n) (DI - HP) Antif/lo temp.C1 (AI - HP)	Frostschutz-Alarm Kreis (n) (Heizbetrieb)	Eine zu niedrige Wassertem- peratur	Überprüfen Sie den Sollwert der Temperatur.
b(n)dF	dF AL circ(n)	Falsche Abtauung Kreis (n) (maximale Zeit zugelassen)	Abtauzeit zu lang; Außentemperatur außerhalb der Betriebsgrenzen; Kältemittelfüllmenge Lecka- ge.	Überprüfen Sie Abtauung Sollwert; Wiederherstellung der normalen Arbeitsbedin- gungen; Suchen und reparieren Sie das Leck.
b(n)hP	Hi press circ(n)	Hochdruckwandler Alarm Kreis (n)	Im Heizbetrieb: Zu wenig Wasserdurchfluss im Kreislauf; Zu wenig Wasserdurchfluss im Warmwasserkreis. Im Kühlbetrieb: Eine unzureichende Belüftung an der Quelle Lüfter; Zu wenig Wasserdurchfluss im Warmwasserkreis.	Stellen Sie die richtige Nutzer Wasserdurchflussmenge ein. Stellen Sie die richtige Wasserdurchflussmenge im Brauchwasserkreis ein. Stellen Sie den richtigen Luftstrom am Ventilator ein. Stellen Sie die richtige Wasserdurchflussmenge im Brauchwasserkreis ein.
B(n)LP	Low press circ(n)	Niederdruck Schaltschaltung (n)	Kältemittelfüllmenge Leckage.	Finden Leckage-und Reparaturarbeiten.
b(n)IP	Low press circ(n)	ND-Transmitter Alarm Kreis (n)	Kältemittelfüllmenge Leckage.	Finden Leckage-und Reparaturarbeiten.
b(n)tF	Cond.fan overl circ(n)	Überlast Quelle Fan Alarm	Ventilator Eingangsstrom außerhalb Betriebsgrenze.	Überprüfen Sie den ord- nungsgemäßen Betrieb der Quelle Lüfter. Ersetzen Sie diese falls hier der Fehler liegt.

b(n)Cu	Unload high t/p circ(n)	Warning high pressure circuit (n)	Im Heizbetrieb: Unzureichender Wasserfluss im Benutzerkreislauf; Unzureichender Wasserfluss im Brauchwasserkreislauf. Im Kühlbetrieb: Unzureichender Luftstrom am Quelllüfter; Unzureichender Wasserdurchfluss des Brauchwasserkreislaufs	Wenden Sie sich an die Serviceabteilung
--------	-------------------------	--------------------------------------	---	--

Buchstabe (n) identifiziert die betreffende Schaltung

Verdichter alarms				
Kode	Visualization	Alarm Beschreibung	Ursache	Lösung
C(n)tr	C(n) overl	Verdichter (n) Überlast	Verdichter (n) Eingangsstrom außerhalb Betriebsgrenze.	Kontaktieren Sie das Unter- nehmen
C(n)oP	AL oil C (n)	Kompressor (n) Druckschalter/Ölschwimmer	Wartung erforderlich.	Wenden Sie sich an die Serviceabteilung
C(n)dt	Hi Disch temp.C(n)	Kompressor (n) hohe Austrittstemperatur	Service erforderlich.	Wenden Sie sich an die Serviceabteilung.

Buchstabe (n) identifiziert die betreffende Schaltung

Andere Alarms			
Visualization	Alarm Beschreibung	Ursache	Lösung
Termostatic expansion valves AL!	Der Ausdehnungskreislauf stoppt (Nur mit elektroni- schem Ausdehnungsventil).	Fehler im Kühlkreislauf.	Wenden Sie sich an die Serviceabteilung
Flowmeter transd.	Falsche Anzeige des Durchflussmesser-Wandlers	Fehler des Wandlers und/ oder des Hydraulikkreises	Überprüfen Sie die elektri- schen Anschlüsse, falls korrekt, rufen Sie den Service an, um den Sensor auszutauschen

ENEX TECHNOLOGIES

VIA DELLE INDUSTRIE, 7 • CAP 31030 • VACIL DI BREDA DI PIAVE (TV) TEL. +39 0422 605 311

Info@enextechnologies.com • www.enextechnologies.com

Die technischen Daten in diesem Handbuch sind nicht verbindlich. Die firma hat das Recht, jederzeit notwendige Änderungen einzuführen, um das Produkt zu verbessern. Die Referenzsprachen für die gesamte Dokumentation sind Italienisch und Englisch. Die anderen Sprachen sind nur als Leitlinien zu betrachten.

